Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/binom.confint.R
Uses eight different methods to obtain a confidence interval on the binomial probability.
1 | binom.confint(x, n, conf.level = 0.95, methods = "all", ...)
|
x |
Vector of number of successes in the binomial experiment. |
n |
Vector of number of independent trials in the binomial experiment. |
conf.level |
The level of confidence to be used in the confidence interval. |
methods |
Which method to use to construct the interval. Any
combination of |
... |
Additional arguments to be passed to |
Nine methods are allowed for constructing the confidence interval(s):
exact
- Pearson-Klopper method. See also
binom.test
.
asymptotic
- the text-book definition for confidence
limits on a single proportion using the Central Limit Theorem.
agresti-coull
- Agresti-Coull method. For a 95% confidence
interval, this method does not use the concept of "adding 2
successes and 2 failures," but rather uses the formulas explicitly
described in the following link:
http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Agresti-Coull_Interval.
wilson
- Wilson method.
prop.test
- equivalent to prop.test(x = x, n = n,
conf.level = conf.level)$conf.int
.
bayes
- see binom.bayes
.
logit
- see binom.logit
.
cloglog
- see binom.cloglog
.
probit
- see binom.probit
.
profile
- see binom.profile
.
By default all eight are estimated for each value of x
and/or
n
. For the "logit", "cloglog", "probit", and "profile"
methods, the cases where x == 0
or x == n
are treated
separately. Specifically, the lower bound is replaced by
(alpha/2)^n
and the upper bound is replaced by (1-alpha/2)^n
.
A data.frame
containing the observed proportions and
the lower and upper bounds of the confidence interval for all the
methods in "methods"
.
Sundar Dorai-Raj (sdorairaj@gmail.com)
A. Agresti and B.A. Coull (1998), Approximate is better than "exact" for interval estimation of binomial proportions, American Statistician, 52:119-126.
R.G. Newcombe, Logit confidence intervals and the inverse sinh transformation (2001), American Statistician, 55:200-202.
L.D. Brown, T.T. Cai and A. DasGupta (2001), Interval estimation for a binomial proportion (with discussion), Statistical Science, 16:101-133.
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1997) Bayesian Data Analysis, London, U.K.: Chapman and Hall.
binom.bayes
, binom.logit
,
binom.probit
, binom.cloglog
,
binom.coverage
, prop.test
,
binom.test
for comparison to method
"exact"
1 | binom.confint(x = c(2, 4), n = 100, tol = 1e-8)
|
method x n mean lower upper
1 agresti-coull 2 100 0.02000000 0.001095977 0.07441778
2 agresti-coull 4 100 0.04000000 0.012418859 0.10161516
3 asymptotic 2 100 0.02000000 -0.007439496 0.04743950
4 asymptotic 4 100 0.04000000 0.001592707 0.07840729
5 bayes 2 100 0.02475248 0.001548220 0.05487873
6 bayes 4 100 0.04455446 0.009880014 0.08495779
7 cloglog 2 100 0.02000000 0.003866705 0.06362130
8 cloglog 4 100 0.04000000 0.013067378 0.09175206
9 exact 2 100 0.02000000 0.002431337 0.07038393
10 exact 4 100 0.04000000 0.011004494 0.09925716
11 logit 2 100 0.02000000 0.005007519 0.07643178
12 logit 4 100 0.04000000 0.015094076 0.10175601
13 probit 2 100 0.02000000 0.004390455 0.06850351
14 probit 4 100 0.04000000 0.014032309 0.09594809
15 profile 2 100 0.02000000 0.003356435 0.06047940
16 profile 4 100 0.04000000 0.012621438 0.09048300
17 lrt 2 100 0.02000000 0.003353612 0.06047875
18 lrt 4 100 0.04000000 0.012592624 0.09048265
19 prop.test 2 100 0.02000000 0.003471713 0.07736399
20 prop.test 4 100 0.04000000 0.012890866 0.10511152
21 wilson 2 100 0.02000000 0.005501968 0.07001179
22 wilson 4 100 0.04000000 0.015663304 0.09837071
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.