SpectralSynthesis: Generate a Landscape Using Fractional Brownian Motion

Description Usage Arguments Value Note Author(s) References See Also Examples

View source: R/SpectralSynthesis.R


A function to generate a multidimensional landscape as a realisation of a fractional Brownian motion process. This function uses an algorithm adapted from Keitt (2000) and corrected to adhere to a complex conjugacy condition described in Peitgen and Saupe (1988).


SpectralSynthesis(DimExtents, Hursts, RescaleVals = c(0,1))



An integer vector with the length of the desired output in each dimension. length(DimExtents) gives the number of dimensions in the output.


A vector of Hurst exponents in each dimension. If length(DimExtents) is greater than length(Hursts) then the values are recycled.


The outputs are scaled so that all values fall within min(RescaleVals) and max(RescaleVals). If RescaleVals is NULL then the outputs are not rescaled and raw outputs are provided instead.


A vector of length prod(DimExtents) and with a dimensional extent attribute set to DimExtents. Each element contains the (possibly rescaled) output from a realisation of fractional Brownian motion.


It its current implementation, this algorithm creates a landscape with a length in each dimension equal to the smallest power of two that is greater than or equal to the largest value in DimExtents. The final landscape is created by taking the first DimExtents cells in the relevant dimension. This means that it will take just as long to create a landscape that has a DimExtents value of c(4,4,100) than it will to create a landscape with a DimExtents of c(128,128,128). Because spectral synthesis methods are employed, the outputs from this function are periodic. If this is not desirable then it may be neccessary to generate landscapes that are two or three times larger than required and simply take the first few cells in each dimension.


Joseph Chipperfield <joechip90@googlemail.com>


Keitt, T. H. (2000) Spectral representation of neutral landscapes. Landscape Ecology, 15, 479-493.

Peitgen, H. O. and Saupe, D. (1988) The Science of Fractal Images, Springer-Verlag.

With, K. A. (1997) The application of neutral landscape models in conservation biology. Conservation Biology, 11, 1069-1080.

With, K. A. and King A. W. (1997) The use and misuse of neutral landscapes models in ecology. Oikos, 79, 219-229.

See Also

PercolationMap HierarchicalCurdling


# Create a 128 x 128 landscape with a Hurst exponent of 0.5 in each dimension.
# Output values are scaled between 0 and 5
dims.in <- rep(128,2)		# Dimension extent input vector
hursts <- rep(0.5,2)		# 0.5 Hurst in both spatial dimensions
rescaleVals <- c(0,5)		# Rescale the outputs between 0 and 5
output.map <- SpectralSynthesis(dims.in, hursts, rescaleVals)
image(output.map, col = heat.colors(100))

ecomodtools documentation built on May 21, 2017, 12:56 a.m.

Search within the ecomodtools package
Search all R packages, documentation and source code