Description Usage Arguments Details Value Author(s) Examples
Estimates the mode and produces an MCMC sample of the posterior distribution of the parameters of the Cq-dPCR model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  | cqmc(data, mc.rep = 10^4, h = NULL, 
  n0 = NULL, n1 = NULL, 
  nt0 = 0, nt1 = 0, n.lo = 0, n.hi = 0, 
  pars0 = NULL, report = 1, probreport = 0.1, 
  extra = c("trendx", "trendy", "disp", "E1"), 
  c0 = 6, maxn0 = 7, 
  mod.method = "Nelder-Mead", mod.rep = 2000, 
  burnin = 0, nreport = 10, cq.xlim = NA, tune = 1, 
  E1.init = 0.8, E.init = 0.9, d.init = 1, 
  prior = TRUE, 
  mu.fun = function(x) dgamma(x, 1.5, 1.5), 
  A.fun = function(x) x^-1, 
  E.fun = function(x) dbeta(x, 60, 5), 
  E1.fun = E.fun, 
  trendx.fun = function(x) 1, trendy.fun = function(x) 1, 
  disp.fun = function(x) dgamma(x, 10, 10))
 | 
data | 
 cqdat object or data frame  | 
mc.rep | 
 number of MCMC samples. If 0 then MCMC not performed.  | 
h | 
 Threshold value  | 
n0, n1, nt0, nt1, n.lo, n.hi | 
 integer counts of the negative partitions (  | 
pars0 | 
 initial model parameter values  | 
report | 
 if postive tracing information is produced. High values may produce more information.  | 
probreport | 
 if   | 
extra | 
 vector of names of parameters to include in model in additon to   | 
c0 | 
 number of cycles for which exact probabilities are caclulated. This can have a significant impact on speed of computation.  | 
maxn0 | 
 the maximum number of initial molecules used in computation.  | 
mod.method | 
 character string, name of optimsation method used by   | 
mod.rep | 
 maximum number of iterations used by   | 
burnin | 
 proportion of MCMC samples discarded as burn-in.  | 
nreport | 
 number of times the function value and acceptance rate of the MCMC sample are printed.  | 
cq.xlim | 
 if   | 
tune | 
 the tuning parameter for the Metropolis sampling. If a vector, then the same length as the parameter vector.  | 
E.init, E1.init | 
 vectors of initial parameter values (probabilities) for E and E_1.  | 
d.init | 
 initial parameter value (positive) for dispersion (ν).  | 
prior | 
 logical. if   | 
mu.fun, A.fun, E.fun, E1.fun, trendx.fun, trendy.fun, disp.fun | 
 priors as single parameter functions.  | 
This function can be used to find the posterior mode using link{optim} and/or simulate a posterior MCMC sample of the Enhanced dPCR model using MCMCmetrop1R. If prior is FALSE then the former is equivalent to finding the Maximum Likelihood estimate (MLE).
The mode found for a particular set of initial paramemeters may not be the global maximum. For this reason it is recommended to search from a number combinations of E and E1 set through the vectors E.init and E1.init.
If report>0 then "." is printed when the posterior is calculated as 0 (due to computational limitations). If report>0 and probreport>0 then "'" is printed with probability probreport when a non-zero posterior is calculated. If optim fails to find non-zero posteriors, and thus fails to work then a better initial value may be required.
A list with components:
cqdata | 
 the cqdata object containing the data.  | 
counts | 
 a vector of the count data.  | 
pars0 | 
 initial parameters.  | 
logval0 | 
 log-posterior at   | 
h | 
 threshold value.  | 
nx, ny | 
 column and row numbers.  | 
Also included if mod is TRUE:
pars.mod | 
 parameters at posterior mode.  | 
logval.mod | 
 log-posterior at   | 
mod.res | 
 matrix of parameters and log-posteriors found from running optim at different starting values of   | 
Also included if mc is TRUE:
pars.mc | 
 sample mean of MCMC sample of posterior.  | 
logval.mc | 
 log-posterior at   | 
pars.sum | 
 summary of MCMC sample of posterior.  | 
pars.chain | 
 MCMC sample of posterior.  | 
mc.vals | 
 log-posteriors associated with MCMC sample of posterior  | 
mc.acc | 
 acceptance rate.  | 
mcmod.pars | 
 posterior mode from MCMC posterior sample.  | 
mcmod.val | 
 log-posterior at   | 
prior.funs | 
 list of prior distributions.  | 
Philip Wilson
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  | ## Not run: 
# These examples take some time to run.
dat<-fetch(Exp37a,panel=1)
# Estimate posterior mode for single intitial parameter vector
res1<-cqmc(dat,mc.rep=0,E.init=.9,E1.init=.8,probreport=.1)
res2<-cqmc(dat,mod.rep=10^3,mc.rep=10^3,E.init=.9,E1.init=c(.5,.7,.9),probreport=.1)
# Estimate posterior mode from 9 initial parameter vectors. 
# Simulate MCMC sample from posterior distribution 
#  using estimated mode as initial value.
res3<-cqmc(dat,mc.rep=10^4,
  E.init=rep(c(.9,.7),each=3),
  E1.init=rep(c(.9,.7,.5),2),probreport=.1) 
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.