Description Usage Arguments Details Value Note Author(s) References See Also Examples
The functions BE() and BEo() define the beta distribution, a two parameter distribution, for a
gamlss.family object to be used in GAMLSS fitting
using the function gamlss(). BE() has mean equal to the parameter mu
and sigma as scale parameter, see below. BE() is the original parameterizations of the beta distribution as in dbeta() with
shape1=mu and shape2=sigma.
The functions dBE and dBEo, pBE and pBEo, qBE and qBEo and finally rBE and rBE
define the density, distribution function, quantile function and random
generation for the BE and BEo parameterizations respectively of the beta distribution.
1 2 3 4 5 6 7 8 9 | BE(mu.link = "logit", sigma.link = "logit")
dBE(x, mu = 0.5, sigma = 0.02, log = FALSE)
pBE(q, mu = 0.5, sigma = 0.02, lower.tail = TRUE, log.p = FALSE)
qBE(p, mu = 0.5, sigma = 0.02, lower.tail = TRUE, log.p = FALSE)
rBE(n, mu = 0.5, sigma = 0.02)
BEo(mu.link = "log", sigma.link = "log")
dBEo(x, mu = 0.5, sigma = 0.02, log = FALSE)
pBEo(q, mu = 0.5, sigma = 0.02, lower.tail = TRUE, log.p = FALSE)
qBEo(p, mu = 0.5, sigma = 0.02, lower.tail = TRUE, log.p = FALSE)
|
mu.link |
the |
sigma.link |
the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The original beta distributions distribution is given as
f(y|a,b)=1/(Beta(a,b)) y^(a-1)(1-y)^(b-1)
for y=(0,1), α>0 and β>0. In the gamlss implementation of BEo
α=μ and β>σ. The reparametrization in the function BE() is
mu=a/(a+b) and sigma=1/(a+b+1)
for mu=(0,1) and sigma=(0,1).
The expected value of y is mu and the variance is sigma^2*mu*(1-mu).
returns a gamlss.family object which can be used to fit a normal distribution in the gamlss() function.
Note that for BE, mu is the mean and sigma a scale parameter contributing to the variance of y
Bob Rigby and Mikis Stasinopoulos
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | BE()# gives information about the default links for the normal distribution
dat1<-rBE(100, mu=.3, sigma=.5)
hist(dat1)
#library(gamlss)
# mod1<-gamlss(dat1~1,family=BE) # fits a constant for mu and sigma
#fitted(mod1)[1]
#fitted(mod1,"sigma")[1]
plot(function(y) dBE(y, mu=.1 ,sigma=.5), 0.001, .999)
plot(function(y) pBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5), 0.001, 0.999)
plot(function(y) qBE(y, mu=.1 ,sigma=.5, lower.tail=FALSE), 0.001, .999)
dat2<-rBEo(100, mu=1, sigma=2)
#mod2<-gamlss(dat2~1,family=BEo) # fits a constant for mu and sigma
#fitted(mod2)[1]
#fitted(mod2,"sigma")[1]
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.