Description Usage Arguments Details Value Note Author(s) References See Also Examples
The function ING()
defines the Inverse Gamma distribution, a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
, with parameters mu
(the mode) and sigma
. The functions dING
, pING
, qING
and rING
define the density, distribution function, quantile function and random generation for the ING
parameterization of the Inverse Gamma distribution.
1 2 3 4 5 |
mu.link |
Defines the |
sigma.link |
Defines the |
x, q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x] |
p |
vector of probabilities |
n |
number of observations. If |
max.value |
constant; generates a sequence of values for the cdf function |
The parameterization of the Inverse Gamma distribution in the function ING
is
f(y|mu, sigma) = ([mu*(alpha+1)]^{alpha})/Gamma(alpha)*y^{(-(alpha+1))}*exp{-(mu*(alpha+1)}/y)
where alpha = 1/(sigma^2) for y>0, mu>0 and sigma>0.
returns a gamlss.family object which can be used to fit an Inverse Gamma distribution in the gamlss()
function.
For the function ING()
, mu is the mode of the Inverse Gamma distribution.
Bob Rigby r.rigby@londonmet.ac.uk, Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk, Fiona McElduff F.Mcelduff@londonmet.ac.uk and Kalliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507–554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
1 2 3 4 5 6 7 8 9 10 | |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.