criterio.cv: Cross-validation summaries

Description Usage Arguments Value Examples

Description

Generate a data frame of statistical values associated with cross-validation

Usage

1

Arguments

m.cv

data frame containing: the coordinates of data, prediction columns, prediction variance of cross-validation data points, observed values, residuals, zscore (residual divided by kriging standard error), and fold. If the rbf.tcv function is used, the prediction variance and zscore (residual divided by standard error) will have NA's

Value

data frame containing: mean prediction errors (MPE), average kriging standard error (ASEPE), root-mean-square prediction errors (RMSPE), mean standardized prediction errors (MSPE), root-mean-square standardized prediction errors (RMSSPE), mean absolute percentage prediction errors (MAPPE), coefficient of correlation of the prediction errors (CCPE), coefficient of determination (R2) and squared coefficient of correlation of the prediction errors (pseudoR2)

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
library(gstat)
data(meuse) 
coordinates(meuse) <- ~x+y 
m <- vgm(.59, "Sph", 874, .04) 

# leave-one-out cross validation: 
out <- krige.cv(log(zinc)~1, meuse, m, nmax = 40) 
criterio.cv(out)

# multiquadratic function
data(preci)
coordinates(preci)~x+y

# predefined eta
tab <- rbf.tcv(prec~x+y,preci,eta=1.488733, rho=0, n.neigh=9, func="M") 
criterio.cv(tab)


Search within the geospt package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.