| cumimp.combinedGradientForest | R Documentation |
combinedGradientForest object
Provide access to the cumulative importance values of predictors after combining gradientForest objects.
## S3 method for class 'combinedGradientForest'
cumimp(x, predictor, weight = c("uniform", "species", "rsq.total",
"rsq.mean", "site", "site.species", "site.rsq.total", "site.rsq.mean")[3], gf.name, ...)
x |
an object of class |
predictor |
the name of the predictor variable. |
weight |
type of weighting to perform across
|
gf.name |
name of |
... |
further arguments passed to or from other methods. |
Cumulative importance curves are found for each predictor by weighting across the gradientForest objects.
See the section Compositional turnover and equation (9) in Ellis et al (2012).
If gf.name is missing, a list with components x and y,
where x is the predictor values and y is the combined cumulative importance
using the specified weighting across gradientForest objects.
If gf.name is supplied, the list for the predictor from the specified gradientForest object is returned.
N. Ellis, CSIRO, Cleveland, Australia. <Nick.Ellis@csiro.au>. S.J. Smith, DFO, Dartmouth, NS, Canada. <Stephen.Smith@dfo-mpo.gc.ca>
Ellis, N., Smith, S.J., and Pitcher, C.R. (2012) Gradient Forests: calculating importance gradients on physical predictors. Ecology, 93, 156–168.
combinedGradientForest
data(CoMLsimulation)
preds <- colnames(Xsimulation)
specs <- colnames(Ysimulation)
f1 <- gradientForest(data.frame(Ysimulation,Xsimulation), preds, specs[1:6], ntree=10)
f2 <- gradientForest(data.frame(Ysimulation,Xsimulation), preds, specs[1:6+6], ntree=10)
f12 <- combinedGradientForest(west=f1,east=f2)
par(mfrow=c(1,3))
plot(cumimp(f12, "A", gf.name="west"),main="West")
plot(cumimp(f12, "A", gf.name="east"),main="East")
plot(cumimp(f12, "A", weight = "rsq.total"),main="Combined")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.