Description Usage Arguments Value References Examples
Compute the likelihood function of a hawkes process for the given parameter and given the jump times vector (or list of vectors in the multivariate case), and until a time horizon.
1 | likelihoodHawkes(lambda0, alpha, beta, history)
|
lambda0 |
Vector of initial intensity, a scalar in the monovariate case. |
alpha |
Matrix of excitation, a scalar in the monovariate case. Excitation values are all positive. |
beta |
Vector of betas, a scalar in the monovariate case. |
history |
Jump times vector (or list of vectors in the multivariate case). |
Returns the opposite of the likelihood.
Y. Ogata. (1981) On Lewis simulation method for point processes. IEEE Transactions on Information Theory, 31
1 2 3 4 5 6 7 8 9 10 11 12 13 | #One dimensional Hawkes process
lambda0<-0.2
alpha<-0.5
beta<-0.7
history<-simulateHawkes(lambda0,alpha,beta,3600)
l<-likelihoodHawkes(lambda0,alpha,beta,history[[1]])
#Multivariate Hawkes process
lambda0<-c(0.2,0.2)
alpha<-matrix(c(0.5,0,0,0.5),byrow=TRUE,nrow=2)
beta<-c(0.7,0.7)
history<-simulateHawkes(lambda0,alpha,beta,3600)
l<-likelihoodHawkes(lambda0,alpha,beta,history)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.