Description Usage Arguments Details Value Author(s) References Examples
Functions to evaulate the quality of the estimated pareto front.
1 2 3 4 | generationalDistance(x, o)
generalizedSpread(x, o)
epsilonIndicator(x, o)
dominatedHypervolume(x, ref)
|
x |
Estimated pareto front or an object which has a paretoFront method |
o |
True pareto front or an object which has a paretoFront method |
ref |
Reference point (may be omitted). |
Instead of the pareto front, one can also pass an object for which a paretoFront method exists to both methods.
For dominatedHypervolume
, if no reference point is given, the
maximum in each dimension is used as the reference point.
The respective quality measure.
Heike Trautmann trautmann@statistik.uni-dortmund.de, Detlef Steuer steuer@hsu-hamburg.de and Olaf Mersmann olafm@statistik.uni-dortmund.de
Carlos M. Fonseca, Luis Paquete, and Manuel Lopez-Ibanez. An improved dimension-sweep algorithm for the hypervolume indicator. In IEEE Congress on Evolutionary Computation, pages 1157-1163, Vancouver, Canada, July 2006.
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., and Grunert da Fonseca, V (2003): Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation, 7(2), 117-132.
1 2 3 4 5 6 7 8 9 10 11 12 | ## Estimate true front:
tf <- nsga2(fonseca2, 2, 2,
lower.bounds=c(-4, -4), upper.bounds=c(4, 4),
popsize=1000, generations=100)
res <- nsga2(fonseca2, 2, 2,
lower.bounds=c(-4, -4), upper.bounds=c(4, 4),
popsize=16, generations=c(2, 4, 6, 8, 10, 20, 50))
n <- length(res)
sapply(1:n, function(i) dominatedHypervolume(res[[i]], c(1, 1)))
sapply(1:n, function(i) generationalDistance(res[[i]], tf))
sapply(1:n, function(i) generalizedSpread(res[[i]], tf))
sapply(1:n, function(i) epsilonIndicator(res[[i]], tf))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.