cesEst-methods: Methods for Estimated CES Functions

Description Usage Arguments Value Author(s) See Also Examples

Description

Methods for Objects of Class cesEst and cesEst.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
## S3 method for class 'cesEst'
coef( object, ... )
## S3 method for class 'summary.cesEst'
coef( object, ... )
## S3 method for class 'cesEst'
fitted( object, ... )
## S3 method for class 'cesEst'
residuals( object, ... )
## S3 method for class 'cesEst'
vcov( object, ... )

Arguments

object

an object of class cesEst or summary.cesEst.

...

further arguments are currently ignored.

Value

coef.cesEst returns a vector of the estimated coefficients.

coef.summary.cesEst returns a matrix with four columns: the estimated coefficients/parameters of the CES, their standard errors, the t-statistic, and corresponding (two-sided) P-values.

fitted.cesEst returns a vector of the fitted values.

residuals.cesEst returns a vector of the residuals.

vcov.cesEst returns the variance covariance matrix of the estimated coefficients.

Author(s)

Arne Henningsen and Geraldine Henningsen

See Also

cesEst and summary.cesEst.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
   data( germanFarms, package = "micEcon" )
   # output quantity:
   germanFarms$qOutput <- germanFarms$vOutput / germanFarms$pOutput
   # quantity of intermediate inputs
   germanFarms$qVarInput <- germanFarms$vVarInput / germanFarms$pVarInput


   ## CES: Land & Labor
   cesLandLabor <- cesEst( "qOutput", c( "land", "qLabor" ), germanFarms )

   # estimated coefficients
   coef( cesLandLabor )

   # estimated coefficients, their standard errors, t-statistic, P-values
   coef( summary( cesLandLabor ) )

   # fitted values of the estimated model
   fitted( cesLandLabor )

   # residuals of the estimated model
   residuals( cesLandLabor )

   # covariance matrix of the estimated coefficients
   vcov( cesLandLabor )

Example output

Loading required package: minpack.lm
Loading required package: DEoptim
Loading required package: parallel

DEoptim package
Differential Evolution algorithm in R
Authors: D. Ardia, K. Mullen, B. Peterson and J. Ulrich


If you have questions, suggestions, or comments regarding one of the 'micEcon' packages, please use a forum or 'tracker' at micEcon's R-Forge site:
https://r-forge.r-project.org/projects/micecon/
Warning message:
In nls.lm(par = start, fn = residFun, data = data, jac = jac, yName = yName,  :
  lmder: info = -1. Number of iterations has reached `maxiter' == 50.

    gamma     delta       rho 
41.922156  1.302883 -1.648433 
       Estimate Std. Error       t value  Pr(>|t|)
gamma 41.922156  24695.308  0.0016975757 0.9986455
delta  1.302883   1537.480  0.0008474146 0.9993239
rho   -1.648433   1310.831 -0.0012575479 0.9989966
 [1] 1150.129 1189.522 1213.680 1224.445 1224.445 1240.227 1273.760 1276.645
 [9] 1237.746 1281.499 1315.982 1468.405 1529.469 1582.718 1549.750 1567.549
[17] 1649.292 1724.152 1834.960 1937.390
 [1] -203.995640 -226.791848 -144.100558  -52.648155  -46.328588  -54.417075
 [7]  -34.402576   11.916086  -30.039559   -3.090221   44.610450   72.378879
[13]   45.565424  113.241606   94.938764   58.482227    5.748047   31.447549
[19]   52.460421   54.503842
          gamma     delta      rho
gamma 609858261 -37968298 32364523
delta -37968298   2363844 -2015084
rho    32364523  -2015084  1718278

micEconCES documentation built on May 2, 2019, 4:41 p.m.