Description Usage Arguments Value Note Author(s) References See Also Examples
The function collects all existing measures to detect worrying multicollinearity in the package multiCol
.
1 |
X |
A numeric design matrix that should contain more than one regressor (intercept included). |
dummy |
A logical value that indicates if there are dummy variables in the design matrix |
pos |
A numeric vector that indicates the position of the dummy variables, if these exist, in the design matrix |
If X contains two independent variables (intercept included) see SLM
function.
If X contains more than two independent variables (intercept included):
CV |
Coeficients of variation of quantitative variables in |
Prop |
Proportion of ones in the dummy variables. |
R |
Matrix correlation of the quantitative variables in |
detR |
Determinant of the matrix correlation of the quantitative variables in |
VIF |
Variance Inflation Factors of the quantitative variables in |
CN |
Condition Number of |
ki |
Stewart's index of the quantitative variables in |
For more detail, see the help of the functions in See Also
.
R. Salmer<f3>n (romansg@ugr.es) and C. Garc<ed>a (cbgarcia@ugr.es).
L. R. Klein and A.S. Goldberger (1964). An economic model of the United States, 1929-1952. North Holland Publishing Company, Amsterdan.
H. Theil (1971). Principles of Econometrics. John Wiley & Sons, New York.
SLM
, CV
, PROPs
, RdetR
, VIF
, CN
, ki
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | # Henri Theil's textile consumption data modified
data(theil)
head(theil)
cte = array(1,length(theil[,2]))
theil.X = cbind(cte,theil[,-(1:2)])
multiCol(theil.X, TRUE, pos = 4)
# Klein and Goldberger data on consumption and wage income
data(KG)
head(KG)
cte = array(1,length(KG[,1]))
KG.X = cbind(cte,KG[,-1])
multiCol(KG.X)
# random
x1 = array(1,25)
x2 = rnorm(25,100,1)
x = cbind(x1,x2)
head(x)
multiCol(x)
# random
x1 = array(1,25)
x2 = sample(cbind(array(1,25),array(0,25)),25)
x = cbind(x1,x2)
head(x)
multiCol(x, TRUE)
|
obs consume income relprice twentys
[1,] 1923 99.2 96.7 101.0 1
[2,] 1924 99.0 98.1 100.1 1
[3,] 1925 100.0 100.0 100.0 1
[4,] 1926 111.6 104.9 90.6 1
[5,] 1927 122.2 104.9 86.5 1
[6,] 1928 117.6 109.5 89.7 1
$`Coeficients of Variation`
[1] 0.04993766 0.21441845
$`Proportion of ones in the dummys variable`
[1] 41.17647
$`R and det(R)`
$`R and det(R)`$`Correlation matrix`
income relprice
income 1.0000000 0.1788467
relprice 0.1788467 1.0000000
$`R and det(R)`$`Correlation matrix's determinant`
[1] 0.9680139
$`Variance Inflation Factors`
income relprice
1.033043 1.033043
$CN
$CN$`Condition Number without intercept`
[1] 24.15423
$CN$`Condition Number with intercept`
[1] 53.39671
$CN$`Increase (in percentage)`
[1] 54.76458
$ki
$ki$`Stewart index`
[1] 403.20963 415.28266 23.50258
$ki$`Proportion of essential collinearity in i-th independent variable (without intercept)`
[1] 0.2487566 4.3954455
$ki$`Proportion of non-essential collinearity in i-th independent variable (without intercept)`
[1] 99.75124 95.60455
consumption wage.income non.farm.income farm.income
1 62.8 43.41 17.10 3.96
2 65.0 46.44 18.65 5.48
3 63.9 44.35 17.09 4.37
4 67.5 47.82 19.28 4.51
5 71.3 51.02 23.24 4.88
6 76.6 58.71 28.11 6.37
$`Coeficients of Variation`
[1] 0.2660921 0.2503487 0.2867863
$`Proportion of ones in the dummys variable`
[1] "At least one qualitative independent variable are needed (excluding the intercept)"
$`R and det(R)`
$`R and det(R)`$`Correlation matrix`
wage.income non.farm.income farm.income
wage.income 1.0000000 0.9431118 0.8106989
non.farm.income 0.9431118 1.0000000 0.7371272
farm.income 0.8106989 0.7371272 1.0000000
$`R and det(R)`$`Correlation matrix's determinant`
[1] 0.03713592
$`Variance Inflation Factors`
wage.income non.farm.income farm.income
12.296544 9.230073 2.976638
$CN
$CN$`Condition Number without intercept`
[1] 30.2987
$CN$`Condition Number with intercept`
[1] 35.88644
$CN$`Increase (in percentage)`
[1] 15.57062
$ki
$ki$`Stewart index`
[1] 17.86327 185.96422 156.50013 39.16836
$ki$`Proportion of essential collinearity in i-th independent variable (without intercept)`
[1] 6.612317 5.897805 7.599598
$ki$`Proportion of non-essential collinearity in i-th independent variable (without intercept)`
[1] 93.38768 94.10219 92.40040
x1 x2
[1,] 1 102.53548
[2,] 1 101.20446
[3,] 1 99.75182
[4,] 1 100.68300
[5,] 1 98.74066
[6,] 1 100.46400
$`Coeficient of Variation`
[1] 0.009759725
$`Variance Inflation Factor`
[1] 1
$`Condition Number`
[1] 204.9287
$`Stewart index`
[1] 10499.44 10499.44
x1 x2
[1,] 1 1
[2,] 1 1
[3,] 1 1
[4,] 1 1
[5,] 1 0
[6,] 1 0
$`Proportion of ones in the dummy variable`
[1] 44
$`Condition Number`
[1] 2.222711
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.