Description Usage Arguments Details Value Author(s) Examples
Simultaneous confidence intervals for arbitrary parametric contrasts in unbalanced one-way layouts. The procedure controls the FWER in the strong sense.
1 | multcomp.wrapper(model, hypotheses, alternative, rhs=0, alpha, factorC)
|
model |
a fitted model, for example an object returned by lm, glm, or aov etc. It is assumed that coef and vcov methods are available for model. |
hypotheses |
a specification of the linear hypotheses to be tested. |
alternative |
a character string specifying the alternative hypothesis, must be one of 'two.sided' (default), 'greater' or 'less'. |
rhs |
an optional numeric vector specifying the right hand side of the hypothesis. |
alpha |
the significance level |
factorC |
character string, specifing the factor variable of interest |
this function, it is possible to compute simultaneous confidence for arbitrary parametric contrasts in the unbalanced one way layout. Moreover, it computes p-values. The simultaneous confidence intervals are computed using multivariate t-distribution.
A list containing:
adjPValues |
A numeric vector containing the adjusted pValues |
rejected |
A logical vector indicating which hypotheses are rejected |
confIntervals |
A matrix containing the estimates and the lower and upper confidence bound |
errorControl |
A Mutoss S4 class of type |
MuToss-Coding Team
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | data(warpbreaks)
# Tukey contrast on the levels of the factor 'Tension'
multcomp.wrapper(aov(breaks ~ tension, data = warpbreaks), hypotheses = "Tukey", alternative="two.sided", factorC="tension",alpha=0.05)
# Williams contrast on 'Tension'
multcomp.wrapper(aov(breaks ~ tension, data = warpbreaks), hypotheses= "Williams", alternative="two.sided",alpha=0.05,factorC="tension")
# Userdefined contrast matrix
K <-matrix(c(-1,0,1,-1,1,0, -1,0.5,0.5),ncol=3,nrow=3,byrow=TRUE)
multcomp.wrapper(aov(breaks ~ tension, data = warpbreaks), hypotheses=K, alternative="two.sided",alpha=0.05,factorC="tension")
# Two-way anova
multcomp.wrapper(aov(breaks ~ tension*wool, data = warpbreaks), hypotheses="Tukey", alternative="two.sided",alpha=0.05,factorC="wool")
multcomp.wrapper(aov(breaks ~ tension*wool, data = warpbreaks), hypotheses="Tukey", alternative="two.sided",alpha=0.05,factorC="tension")
multcomp.wrapper(aov(breaks ~ tension*wool, data = warpbreaks), hypotheses=K, alternative="two.sided",alpha=0.05, factorC="tension")
data(iris)
multcomp.wrapper(model=lm(Sepal.Length ~ Species, data=iris),hypotheses="Tukey","two.sided",alpha=0.05, factorC="Species")
K <-matrix(c(-1,0,1,-1,1,0, -1,0.5,0.5),ncol=3,nrow=3,byrow=TRUE)
multcomp.wrapper(model=lm(Sepal.Length ~ Species, data=iris),hypotheses=K,"two.sided",alpha=0.05, factorC="Species")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.