Nothing
#' Functions exported from other packages
#'
#' These functions are imported from other packages and re-exported by
#' \pkg{plm} to enable smooth use within \pkg{plm}. Please follow the
#' links to view the function's original documentation.
#' @name re-export_functions
#' @keywords internal
NULL
#' @rdname re-export_functions
#' @name maxLik
#' @importFrom maxLik maxLik
#' @export
NULL
#' plm package: linear models for panel data
#'
#' plm is a package for R which intends to make the estimation of linear panel
#' models straightforward. plm provides functions to estimate a wide variety of
#' models and to make (robust) inference.
#'
#' For a gentle and comprehensive introduction to the package, please see the
#' package's vignette.
#'
#' The main functions to estimate models are:
#'
#' - `plm`: panel data estimators using `lm` on transformed data,
#' - `pvcm`: variable coefficients models
#' - `pgmm`: generalized method of moments (GMM) estimation for panel
#' data,
#' - `pggls`: estimation of general feasible generalized least squares models,
#' - `pmg`: mean groups (MG), demeaned MG and common correlated effects
#' (CCEMG) estimators,
#' - `pcce`: estimators for common correlated effects mean groups (CCEMG) and
#' pooled (CCEP) for panel data with common factors,
#' - `pldv`: panel estimators for limited dependent variables.
#'
#' Next to the model estimation functions, the package offers several
#' functions for statistical tests related to panel data/models.
#'
#' Multiple functions for (robust) variance--covariance matrices are
#' at hand as well.
#'
#' The package also provides data sets to demonstrate functions and to
#' replicate some text book/paper results. Use
#' `data(package="plm")` to view a list of available data sets in
#' the package.
#'
#' @name plm-package
#' @docType package
#' @keywords package
#' @examples
#'
#' data("Produc", package = "plm")
#' zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
#' data = Produc, index = c("state","year"))
#' summary(zz)
#'
#' # replicates some results from Baltagi (2013), table 3.1
#' data("Grunfeld", package = "plm")
#' p <- plm(inv ~ value + capital,
#' data = Grunfeld, model="pooling")
#'
#' wi <- plm(inv ~ value + capital,
#' data = Grunfeld, model="within", effect = "twoways")
#'
#' swar <- plm(inv ~ value + capital,
#' data = Grunfeld, model="random", effect = "twoways")
#'
#' amemiya <- plm(inv ~ value + capital,
#' data = Grunfeld, model = "random", random.method = "amemiya",
#' effect = "twoways")
#'
#' walhus <- plm(inv ~ value + capital,
#' data = Grunfeld, model = "random", random.method = "walhus",
#' effect = "twoways")
#'
NULL
#' Cigarette Consumption
#'
#' a panel of 46 observations from 1963 to 1992
#'
#' *total number of observations* : 1380
#'
#' *observation* : regional
#'
#' *country* : United States
#'
#'
#' @name Cigar
#' @docType data
#' @format
#'
#' A data frame containing :
#' \describe{
#' \item{state}{state abbreviation}
#' \item{year}{the year}
#' \item{price}{price per pack of cigarettes}
#' \item{pop}{population}
#' \item{pop16}{population above the age of 16}
#' \item{cpi}{consumer price index (1983=100)}
#' \item{ndi}{per capita disposable income}
#' \item{sales}{cigarette sales in packs per capita}
#' \item{pimin}{minimum price in adjoining states per pack of cigarettes}
#' }
#'
#' @references
#'
#' \insertRef{BALT:01}{plm}
#'
#' \insertRef{BALT:13}{plm}
#'
#' \insertRef{BALT:LEVI:92}{plm}
#'
#' \insertRef{BALT:GRIF:XION:00}{plm}
#'
#' @source
#'
#' Online complements to Baltagi (2001):
#'
#' \url{https://www.wiley.com/legacy/wileychi/baltagi/}
#'
#' Online complements to Baltagi (2013):
#'
#' \url{https://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452}
#' @importFrom Rdpack reprompt
#' @keywords datasets
NULL
#' Crime in North Carolina
#'
#' a panel of 90 observational units (counties) from 1981 to 1987
#'
#' *total number of observations* : 630
#'
#' *observation* : regional
#'
#' *country* : United States
#'
#' The variables l* (lcrmrte, lprbarr, ...) contain the pre-computed logarithms
#' of the base variables as found in the original data set. Note that these
#' values slightly differ from what R's log() function yields for the base
#' variables. In order to reproduce examples from the literature, the
#' pre-computed logs need to be used, otherwise the results differ slightly.
#'
#' @name Crime
#' @docType data
#' @format A data frame containing :
#' \describe{
#' \item{county}{county identifier}
#' \item{year}{year from 1981 to 1987}
#' \item{crmrte}{crimes committed per person}
#' \item{prbarr}{'probability' of arrest}
#' \item{prbconv}{'probability' of conviction}
#' \item{prbpris}{'probability' of prison sentence}
#' \item{avgsen}{average sentence, days}
#' \item{polpc}{police per capita}
#' \item{density}{people per square mile}
#' \item{taxpc}{tax revenue per capita}
#' \item{region}{factor. One of 'other', 'west' or 'central'.}
#' \item{smsa}{factor. (Also called "urban".) Does the individual reside in a SMSA (standard metropolitan statistical area)?}
#' \item{pctmin}{percentage minority in 1980}
#' \item{wcon}{weekly wage in construction}
#' \item{wtuc}{weekly wage in transportation, utilities, communications}
#' \item{wtrd}{weekly wage in wholesale and retail trade}
#' \item{wfir}{weekly wage in finance, insurance and real estate}
#' \item{wser}{weekly wage in service industry}
#' \item{wmfg}{weekly wage in manufacturing}
#' \item{wfed}{weekly wage in federal government}
#' \item{wsta}{weekly wage in state government}
#' \item{wloc}{weekly wage in local government}
#' \item{mix}{offence mix: face-to-face/other}
#' \item{pctymle}{percentage of young males (between ages 15 to 24)}
#' \item{lcrmrte}{log of crimes committed per person}
#' \item{lprbarr}{log of 'probability' of arrest}
#' \item{lprbconv}{log of 'probability' of conviction}
#' \item{lprbpris}{log of 'probability' of prison sentence}
#' \item{lavgsen}{log of average sentence, days}
#' \item{lpolpc}{log of police per capita}
#' \item{ldensity}{log of people per square mile}
#' \item{ltaxpc}{log of tax revenue per capita}
#' \item{lpctmin}{log of percentage minority in 1980}
#' \item{lwcon}{log of weekly wage in construction}
#' \item{lwtuc}{log of weekly wage in transportation, utilities, communications}
#' \item{lwtrd}{log of weekly wage in wholesale and retail trade}
#' \item{lwfir}{log of weekly wage in finance, insurance and real estate}
#' \item{lwser}{log of weekly wage in service industry}
#' \item{lwmfg}{log of weekly wage in manufacturing}
#' \item{lwfed}{log of weekly wage in federal government}
#' \item{lwsta}{log of weekly wage in state government}
#' \item{lwloc}{log of weekly wage in local government}
#' \item{lmix}{log of offence mix: face-to-face/other}
#' \item{lpctymle}{log of percentage of young males (between ages 15 to 24)}}
#'
#' @references
#'
#' \insertRef{CORN:TRUM:94}{plm}
#'
#' \insertRef{BALT:06}{plm}
#'
#' \insertRef{BALT:01}{plm}
#'
#' \insertRef{BALT:13}{plm}
#'
#' @source
#'
#' Journal of Applied Econometrics Data Archive (complements Baltagi
#' (2006)):
#'
#' \url{http://qed.econ.queensu.ca/jae/2006-v21.4/baltagi/}
#'
#' Online complements to Baltagi (2001):
#'
#' \url{https://www.wiley.com/legacy/wileychi/baltagi/}
#'
#' Online complements to Baltagi (2013):
#'
#' \url{https://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452}
#'
#' See also Journal of Applied Econometrics data archive entry for
#' Baltagi (2006) at
#' \url{http://qed.econ.queensu.ca/jae/2006-v21.4/baltagi/}.
#'
#' @keywords datasets
NULL
#' Employment and Wages in the United Kingdom
#'
#' An unbalanced panel of 140 observations from 1976 to 1984
#'
#' *total number of observations* : 1031
#'
#' *observation* : firms
#'
#' *country* : United Kingdom
#'
#'
#' @name EmplUK
#' @docType data
#' @format A data frame containing :
#' \describe{
#' \item{firm}{firm index}
#' \item{year}{year}
#' \item{sector}{the sector of activity}
#' \item{emp}{employment}
#' \item{wage}{wages}
#' \item{capital}{capital}
#' \item{output}{output}
#' }
#' @source
#' \insertRef{AREL:BOND:91}{plm}
#' @keywords datasets
NULL
#' Gasoline Consumption
#'
#' A panel of 18 observations from 1960 to 1978
#'
#' *total number of observations* : 342
#'
#' *observation* : country
#'
#' *country* : OECD
#'
#'
#' @name Gasoline
#' @docType data
#' @format A data frame containing :
#' \describe{
#' \item{country}{a factor with 18 levels}
#' \item{year}{the year}
#' \item{lgaspcar}{logarithm of motor gasoline consumption per car}
#' \item{lincomep}{logarithm of real per-capita income}
#' \item{lrpmg}{logarithm of real motor gasoline price}
#' \item{lcarpcap}{logarithm of the stock of cars per capita}
#' }
#' @references
#'
#' \insertRef{BALT:01}{plm}
#'
#' \insertRef{BALT:13}{plm}
#'
#' \insertRef{BALT:GRIF:83}{plm}
#'
#' @source
#'
#' Online complements to Baltagi (2001):
#'
#' \url{https://www.wiley.com/legacy/wileychi/baltagi/}
#'
#' Online complements to Baltagi (2013):
#'
#' \url{https://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452}
#' @keywords datasets
NULL
#' Grunfeld's Investment Data
#'
#' A balanced panel of 10 observational units (firms) from 1935 to 1954
#'
#' *total number of observations* : 200
#'
#' *observation* : production units
#'
#' *country* : United States
#'
#'
#' @name Grunfeld
#' @docType data
#' @format A data frame containing :
#' \describe{
#' \item{firm}{observation}
#' \item{year}{date}
#' \item{inv}{gross Investment}
#' \item{value}{value of the firm}
#' \item{capital}{stock of plant and equipment} }
#'
#' @note The Grunfeld data as provided in package `plm` is the
#' same data as used in Baltagi (2001), see **Examples** below.
#'
#' NB:\cr Various versions of the Grunfeld data circulate
#' online. Also, various text books (and also varying among editions)
#' and papers use different subsets of the original Grunfeld data,
#' some of which contain errors in a few data points compared to the
#' original data used by Grunfeld (1958) in his PhD thesis. See
#' Kleiber/Zeileis (2010) and its accompanying website for a
#' comparison of various Grunfeld data sets in use.
#'
#' @seealso For the complete Grunfeld data (11 firms), see
#' [AER::Grunfeld], in the `AER` package.
#'
#' @references
#'
#' \insertRef{BALT:01}{plm}
#'
#' \insertRef{BALT:13}{plm}
#'
#' \insertRef{GRUN:58}{plm}
#'
#' \insertRef{KLEI:ZEIL:10}{plm}
#'
#' website accompanying the paper with various variants of the
#' Grunfeld data:
#' \url{https://www.zeileis.org/grunfeld/}.
## \url{https://eeecon.uibk.ac.at/~zeileis/grunfeld/}.
## \url{http://statmath.wu-wien.ac.at/~zeileis/grunfeld/}.
#'
#' @source Online complements to Baltagi (2001):
#'
#' \url{https://www.wiley.com/legacy/wileychi/baltagi/}
#'
#' \url{https://www.wiley.com/legacy/wileychi/baltagi/supp/Grunfeld.fil}
#'
#' Online complements to Baltagi (2013):
#'
#' \url{https://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452}
#' @keywords datasets
#' @examples
#'
#' \dontrun{
#' # Compare plm's Grunfeld data to Baltagi's (2001) Grunfeld data:
#' data("Grunfeld", package="plm")
#' Grunfeld_baltagi2001 <- read.csv("http://www.wiley.com/legacy/wileychi/
#' baltagi/supp/Grunfeld.fil", sep="", header = FALSE)
#' library(compare)
#' compare::compare(Grunfeld, Grunfeld_baltagi2001, allowAll = T) # same data set
#' }
#'
NULL
#' Hedonic Prices of Census Tracts in the Boston Area
#'
#' A cross-section
#'
#' *number of observations* : 506
#'
#' *observation* : regional
#'
#' *country* : United States
#'
#'
#' @name Hedonic
#' @docType data
#' @format A dataframe containing:
#' \describe{
#' \item{mv}{median value of owner--occupied homes}
#' \item{crim}{crime rate}
#' \item{zn}{proportion of 25,000 square feet residential lots}
#' \item{indus}{proportion of no--retail business acres}
#' \item{chas}{is the tract bounds the Charles River?}
#' \item{nox}{annual average nitrogen oxide concentration in parts per hundred million}
#' \item{rm}{average number of rooms}
#' \item{age}{proportion of owner units built prior to 1940}
#' \item{dis}{weighted distances to five employment centers in the Boston area}
#' \item{rad}{index of accessibility to radial highways}
#' \item{tax}{full value property tax rate ($/$10,000)}
#' \item{ptratio}{pupil/teacher ratio}
#' \item{blacks}{proportion of blacks in the population}
#' \item{lstat}{proportion of population that is lower status}
#' \item{townid}{town identifier} }
#'
#' @references
#'
#' \insertRef{BALT:01}{plm}
#'
#' \insertRef{BALT:13}{plm}
#'
#' \insertRef{BESL:KUH:WELS:80}{plm}
#'
#' \insertRef{HARR:RUBI:78}{plm}
#' @source Online complements to Baltagi (2001):
#'
#' \url{https://www.wiley.com/legacy/wileychi/baltagi/}
#'
#' Online complements to Baltagi (2013):
#'
#' \url{https://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452}
#' @keywords datasets
NULL
#' Wages and Hours Worked
#'
#' A panel of 532 observations from 1979 to 1988
#'
#' *number of observations* : 5320
#'
#'
#' @name LaborSupply
#' @docType data
#' @format A data frame containing :
#' \describe{
#' \item{lnhr}{log of annual hours worked}
#' \item{lnwg}{log of hourly wage}
#' \item{kids}{number of children}
#' \item{age}{age}
#' \item{disab}{bad health}
#' \item{id}{id}
#' \item{year}{year}
#' }
#'
#' @references
#'
#' \insertRef{CAME:TRIV:05}{plm}
#'
#' \insertRef{ZILI:97}{plm}
#'
#' @source Online complements to Ziliak (1997).
#'
#' Journal of Business Economics and Statistics web site:
#' \url{https://amstat.tandfonline.com/loi/ubes20/}.
#'
#' @keywords datasets
NULL
#' Wages and Education of Young Males
#'
#' A panel of 545 observations from 1980 to 1987
#'
#' *total number of observations* : 4360
#'
#' *observation* : individuals
#'
#' *country* : United States
#'
#'
#' @name Males
#' @docType data
#' @format A data frame containing :
#' \describe{
#' \item{nr}{identifier}
#' \item{year}{year}
#' \item{school}{years of schooling}
#' \item{exper}{years of experience (computed as `age-6-school`)}
#' \item{union}{wage set by collective bargaining?}
#' \item{ethn}{a factor with levels `black, hisp, other`}
#' \item{married}{married?}
#' \item{health}{health problem?}
#' \item{wage}{log of hourly wage}
#' \item{industry}{a factor with 12 levels}
#' \item{occupation}{a factor with 9 levels}
#' \item{residence}{a factor with levels `rural_area, north_east, northern_central, south`}
#' }
#'
#' @references
#'
#' \insertRef{VELL:VERB:98}{plm}
#'
#' \insertRef{VERB:04}{plm}
#'
#' @source Journal of Applied Econometrics data archive
#' \url{http://qed.econ.queensu.ca/jae/1998-v13.2/vella-verbeek/}.
#'
#' @keywords datasets
NULL
#' Purchasing Power Parity and other parity relationships
#'
#' A panel of 104 quarterly observations from 1973Q1 to 1998Q4
#'
#' *total number of observations* : 1768
#'
#' *observation* : country
#'
#' *country* : OECD
#'
#'
#' @name Parity
#' @docType data
#' @format A data frame containing :
#' \describe{
#' \item{country}{country codes: a factor with 17 levels}
#' \item{time}{the quarter index, 1973Q1-1998Q4}
#' \item{ls}{log spot exchange rate vs. USD}
#' \item{lp}{log price level}
#' \item{is}{short term interest rate}
#' \item{il}{long term interest rate}
#' \item{ld}{log price differential vs. USA}
#' \item{uis}{U.S. short term interest rate}
#' \item{uil}{U.S. long term interest rate} }
#'
#' @references
#'
#' \insertRef{COAK:FUER:SMIT:06}{plm}
#'
#' \insertRef{DRIS:KRAA:98}{plm}
#'
#' @source
#'
#' \insertRef{COAK:FUER:SMIT:06}{plm}
#' @keywords datasets
NULL
#' US States Production
#'
#' A panel of 48 observations from 1970 to 1986
#'
#' *total number of observations* : 816
#'
#' *observation* : regional
#'
#' *country* : United States
#'
#'
#' @name Produc
#' @docType data
#' @format A data frame containing :
#' \describe{
#' \item{state}{the state}
#' \item{year}{the year}
#' \item{region}{the region}
#' \item{pcap}{public capital stock}
#' \item{hwy}{highway and streets}
#' \item{water}{water and sewer facilities}
#' \item{util}{other public buildings and structures}
#' \item{pc}{private capital stock}
#' \item{gsp}{gross state product}
#' \item{emp}{labor input measured by the employment in non--agricultural payrolls}
#' \item{unemp}{state unemployment rate} }
#'
#' @references
#'
#' \insertRef{BALT:01}{plm}
#'
#' \insertRef{BALT:13}{plm}
#'
#' \insertRef{BALT:PINN:95}{plm}
#'
#' \insertRef{MUNN:90}{plm}
#'
#' @source Online complements to Baltagi (2001):
#'
#' \url{https://www.wiley.com/legacy/wileychi/baltagi/}
#'
#' Online complements to Baltagi (2013):
#'
#' \url{https://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452}
#' @keywords datasets
NULL
#' Production of Rice in Indonesia
#'
#' a panel of 171 observations
#'
#' *number of observations* : 1026
#'
#' *observation* : farms
#'
#' *country* : Indonesia
#'
#'
#' @name RiceFarms
#' @docType data
#' @format A dataframe containing :
#' \describe{
#' \item{id}{the farm identifier}
#'
#' \item{size}{the total area cultivated with rice, measured in hectares}
#'
#' \item{status}{land status, on of `'owner'` (non sharecroppers,
#' owner operators or leaseholders or both), `'share'`
#' (sharecroppers), `'mixed'` (mixed of the two previous status)}
#'
#' \item{varieties}{one of `'trad'` (traditional varieties),
#' `'high'` (high yielding varieties) and `'mixed'` (mixed
#' varieties)}
#'
#' \item{bimas}{bIMAS is an intensification program; one of
#' `'no'` (non-bimas farmer), `'yes'` (bimas farmer) or
#' `'mixed'` (part but not all of farmer's land was registered to
#' be in the bimas program)}
#'
#' \item{seed}{seed in kilogram}
#'
#' \item{urea}{urea in kilogram}
#'
#' \item{phosphate}{phosphate in kilogram}
#'
#' \item{pesticide}{pesticide cost in Rupiah}
#'
#' \item{pseed}{price of seed in Rupiah per kg}
#'
#' \item{purea}{price of urea in Rupiah per kg}
#'
#' \item{pphosph}{price of phosphate in Rupiah per kg}
#'
#' \item{hiredlabor}{hired labor in hours}
#'
#' \item{famlabor}{family labor in hours}
#'
#' \item{totlabor}{total labor (excluding harvest labor)}
#'
#' \item{wage}{labor wage in Rupiah per hour}
#'
#' \item{goutput}{gross output of rice in kg}
#'
#' \item{noutput}{net output, gross output minus harvesting cost (paid
#' in terms of rice)}
#'
#' \item{price}{price of rough rice in Rupiah per kg}
#'
#' \item{region}{one of `'wargabinangun'`, `'langan'`,
#' `'gunungwangi'`, `'malausma'`, `'sukaambit'`,
#' `'ciwangi'`}
#'
#' }
#'
#' @source
#'
#' \insertRef{FENG:HORR:12}{plm}
#' @keywords datasets
NULL
#' Employment and Wages in Spain
#'
#' A panel of 738 observations from 1983 to 1990
#'
#' *total number of observations*: 5904
#'
#' *observation*: firms
#'
#' *country*: Spain
#'
#'
#' @name Snmesp
#' @docType data
#' @format A data frame containing:
#'
#' \describe{
#' \item{firm}{firm index}
#' \item{year}{year}
#' \item{n}{log of employment}
#' \item{w}{log of wages}
#' \item{y}{log of real output}
#' \item{i}{log of intermediate inputs}
#' \item{k}{log of real capital stock}
#' \item{f}{real cash flow} }
#'
#' @references
#'
#' \insertRef{ALON:AREL:99}{plm}
#' @source Journal of Business Economics and Statistics data archive:
#'
#' \url{https://amstat.tandfonline.com/loi/ubes20/}.
#'
#' @keywords datasets
NULL
#' The Penn World Table, v. 5
#'
#' A panel of 125 observations from 1960 to 1985
#'
#' *total number of observations* : 3250
#'
#' *observation* : country
#'
#' *country* : World
#'
#'
#' @name SumHes
#' @docType data
#' @format A data frame containing :
#' \describe{
#' \item{year}{the year}
#' \item{country}{the country name (factor)}
#' \item{opec}{OPEC member?}
#' \item{com}{communist regime? }
#' \item{pop}{country's population (in thousands)}
#' \item{gdp}{real GDP per capita (in 1985 US dollars)}
#' \item{sr}{saving rate (in percent)}}
#'
#' @references
#'
#' \insertRef{HAYA:00}{plm}
#'
#' \insertRef{SUMM:HEST:91}{plm}
#'
#' @source Online supplements to Hayashi (2000).
#'
#' \url{http://fhayashi.fc2web.com/datasets.htm}
#'
#' @keywords datasets
NULL
#' Panel Data of Individual Wages
#'
#' A panel of 595 individuals from 1976 to 1982, taken from the Panel Study of
#' Income Dynamics (PSID).\cr\cr The data are organized as a stacked time
#' series/balanced panel, see **Examples** on how to convert to a
#' `pdata.frame`.
#'
#' *total number of observations* : 4165
#'
#' *observation* : individuals
#'
#' *country* : United States
#'
#'
#' @name Wages
#' @docType data
#' @format A data frame containing:
#' \describe{
#' \item{exp}{years of full-time work experience.}
#' \item{wks}{weeks worked.}
#' \item{bluecol}{blue collar?}
#' \item{ind}{works in a manufacturing industry?}
#' \item{south}{resides in the south?}
#' \item{smsa}{resides in a standard metropolitan statistical area?}
#' \item{married}{married?}
#' \item{sex}{a factor with levels `"male"` and `"female"`}
#' \item{union}{individual's wage set by a union contract?}
#' \item{ed}{years of education.}
#' \item{black}{is the individual black?}
#' \item{lwage}{logarithm of wage.} }
#'
#' @references
#'
#'\insertRef{BALT:01}{plm}
#'
#' \insertRef{BALT:13}{plm}
#'
#' \insertRef{CORN:RUPE:88}{plm}
#'
#' @source Online complements to Baltagi (2001):
#'
#' \url{https://www.wiley.com/legacy/wileychi/baltagi/}
#'
#' Online complements to Baltagi (2013):
#'
#' \url{https://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=4338&itemId=1118672321&resourceId=13452}
#' @keywords datasets
#' @examples
#'
#' # data set 'Wages' is organized as a stacked time series/balanced panel
#' data("Wages", package = "plm")
#' Wag <- pdata.frame(Wages, index=595)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.