gammaz: Complex Gamma Function

Description Usage Arguments Details Value Note References See Also Examples

Description

Gamma function valid in the entire complex plane.

Usage

1
gammaz(z)

Arguments

z

Real or complex number or a numeric or complex vector.

Details

Computes the Gamma function for complex arguments using the Lanczos series approximation.

Accuracy is 15 significant digits along the real axis and 13 significant digits elsewhere.

To compute the logarithmic Gamma function use log(gammaz(z)).

Value

Returns a complex vector of function values.

Note

Copyright (c) 2001 Paul Godfrey for a Matlab version available on Mathwork's Matlab Central under BSD license.

Numerical Recipes used a 7 terms formula for a less effective approximation.

References

Zhang, Sh., and J. Jin (1996). Computation of Special Functions. Wiley-Interscience, New York.

See Also

gamma, gsl::lngamma_complex

Examples

1
2
3
4
5
6
7
max(gamma(1:10) - gammaz(1:10))
gammaz(-1)
gammaz(c(-2-2i, -1-1i, 0, 1+1i, 2+2i))

# Euler's reflection formula
z <- 1+1i
gammaz(1-z) * gammaz(z)  # == pi/sin(pi*z)


Search within the pracma package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.