Nothing
##
## g a m m a z . R
##
gammaz <- function(z) {
if (!is.numeric(z) && !is.complex(z))
stop("Argument 'z' must be a numeric or complex vector.")
z <- c(z); zz <- z
f <- complex(length(z))
p <- which(Re(z) < 0)
if (length(p) > 0) z[p] <- -z[p]
# Lanczos approximation
g <- 607/128
cc <- c( 0.99999999999999709182, 57.156235665862923517,
-59.597960355475491248, 14.136097974741747174,
-0.49191381609762019978, 0.33994649984811888699e-4,
0.46523628927048575665e-4, -0.98374475304879564677e-4,
0.15808870322491248884e-3, -0.21026444172410488319e-3,
0.21743961811521264320e-3, -0.16431810653676389022e-3,
0.84418223983852743293e-4, -0.26190838401581408670e-4,
0.36899182659531622704e-5)
z <- z - 1
zh <- z + 0.5
zgh <- zh + g
# trick for avoiding FP overflow above z=141
zp <- zgh^(zh*0.5)
ss <- 0.0
for (k in (length(cc)-1):1)
ss <- ss + cc[k+1] / (z + k)
# sqrt(2Pi)
sq2pi <- 2.5066282746310005024157652848110;
f <- (sq2pi * (cc[1]+ss)) * ((zp * exp(-zgh)) * zp);
f[z == 0 | z == 1] <- 1.0
# adjust for negative real parts
if (length(p) > 0)
f[p] <- -pi/(zz[p] * f[p] * sin(pi*zz[p]))
# adjust for negative poles
p <- which(round(zz) == zz & Im(zz) == 0 & Re(zz) <= 0)
if (length(p) > 0)
f[p] <- Inf
return(f)
}
# lgammaz <- function(z) {
# if (!is.numeric(z) && !is.complex(z))
# stop("Argument 'z' must be a numeric or complex vector.")
#
# dimz <- dim(z)
# z <- c(z) + 0i
# zz <- z
# f <- complex(length(z))
#
# p <- which(Re(z) < 0)
# if (length(p) > 0) z[p] <- -z[p]
#
# # Lanczos approximation
# g <- 607/128
#
# cc <- c( 0.99999999999999709182, 57.156235665862923517,
# -59.597960355475491248, 14.136097974741747174,
# -0.49191381609762019978, 0.33994649984811888699e-4,
# 0.46523628927048575665e-4, -0.98374475304879564677e-4,
# 0.15808870322491248884e-3, -0.21026444172410488319e-3,
# 0.21743961811521264320e-3, -0.16431810653676389022e-3,
# 0.84418223983852743293e-4, -0.26190838401581408670e-4,
# 0.36899182659531622704e-5)
#
# s <- 0
# for (k in length(cc):2)
# s <- s + cc[k]/(z + (k-2))
#
# zg <- z + g - 0.5
# s2pi <- 0.9189385332046727417803297
# f <- (s2pi + log(cc[1]+s)) - zg + (z-0.5) * log(zg)
#
# f[z == 1 | z == 2] <- 0.0
#
# if (length(p) > 0) {
# lpi <- 1.14472988584940017414342735 + pi*1i
# f[p] <- lpi - log(zz[p]) - f[p] - log(sin(pi*zz[p]))
# }
#
# p <- which(round(zz) == zz & Im(zz) == 0 & Re(zz) <= 0)
# if (length(p) > 0)
# f[p] <- Inf
#
# dim(f) <- dimz
# return(f)
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.