Nothing
##
## f m i n b n d . R Brent's Minimization Algorithm
##
fminbnd <- function(f, a, b, maxiter = 1000, maximum = FALSE,
tol = 1e-07, rel.tol = tol, abs.tol = 1e-15, ...) {
stopifnot(is.numeric(a), length(a) == 1,
is.numeric(b), length(b) == 1)
if (a >= b)
stop("Interval end points must fulfill a < b !")
fun <- match.fun(f)
if (maximum)
f <- function(x) -fun(x, ...)
else
f <- function(x) fun(x, ...)
# phi is the square of the inverse of the golden ratio.
phi <- 0.5 * ( 3.0 - sqrt ( 5.0 ) )
xl <- a; xu <- b
xmin <- xl + phi*(xu-xl)
fmin <- f(xmin)
nfeval <- 1
step <- step2 <- 0.0
xmin1 <- xmin; fmin1 <- fmin
xmin2 <- xmin; fmin2 <- fmin
converged <- FALSE
iter <- 0
while (iter < maxiter) {
pp <- qq <- 0.0
tolx <- rel.tol * abs(xmin) + abs.tol
xm = (xu+xl)/2
if (abs(xmin - xm) <= 2*tolx - (xu-xl)/2) {
converged <- TRUE
break
}
iter <- iter + 1
if (abs(step2) > tolx) {
rr <- (xmin - xmin1) * (fmin - fmin2)
qq <- (xmin - xmin2) * (fmin - fmin1)
pp <- (xmin - xmin2) * qq - (xmin - xmin1) * rr
qq <- 2*(qq - rr)
if (qq > 0) {
pp <- -pp
} else {
qq <- -qq
}
}
if (abs(pp) < abs(qq*step2/2) && pp < qq*(xu-xmin) && pp < qq*(xmin-xl)) {
step2 <- step
step <- pp/qq
xtemp <- xmin + step
if ((xtemp - xl) < 2*tolx || (xu - xtemp) < 2*tolx) {
step <- if (xmin < xm) tolx else -tolx
}
} else {
step2 <- if (xmin < xm) xu - xmin else xl - xmin
step <- phi * step2
}
if (abs(step) >= tolx) {
xnew <- xmin + step
} else {
xnew <- xmin + (if (step > 0) tolx else -tolx)
}
fnew <- f(xnew)
nfeval <- nfeval + 1
if (fnew <= fmin) {
if (xnew < xmin) {
xu <- xmin
} else {
xl <- xmin
}
xmin2 <- xmin1; fmin2 <- fmin1
xmin1 <- xmin; fmin1 <- fmin
xmin <- xnew; fmin <- fnew
} else {
if (xnew < xmin) {
xl <- xnew
} else {
xu <- xnew
}
if (xnew <= xmin1 || xmin1 == xmin) {
xmin2 = xmin1; fmin2 = fmin1
xmin1 = xnew; fmin1 = fnew
} else if (xnew <= xmin2 || xmin2 == xmin || xmin2 == xmin1) {
xmin2 <- xnew; fmin2 <- fnew
}
}
}
return(list(xmin = xmin, fmin = fmin,
niter = iter, estim.prec = abs(step)))
}
# fminbnd <- function(f, a, b, ..., maxiter = 1000, maximum = FALSE,
# tol = .Machine$double.eps^(2/3)) {
# stopifnot(is.numeric(a), length(a) == 1,
# is.numeric(b), length(b) == 1)
# if (a >= b)
# stop("Interval end points must fulfill a < b !")
#
# fun <- match.fun(f)
# if (maximum)
# f <- function(x) -fun(x, ...)
# else
# f <- function(x) fun(x, ...)
#
# # phi is the square of the inverse of the golden ratio.
# phi <- 0.5 * ( 3.0 - sqrt ( 5.0 ) )
#
# # Set tolerances
# tol1 <- 1 + eps()
# eps0 <- sqrt(eps())
# tol3 <- tol / 3
#
# sa <- a; sb <- b
# x <- sa + phi * ( b - a )
# fx <- f(x)
# v <- w <- x
# fv <- fw <- fx
# e <- 0.0;
#
# niter <- 1
# while ( niter <= maxiter ) {
# xm <- 0.5 * ( sa + sb )
# t1 <- eps0 * abs ( x ) + tol/3
# t2 <- 2.0 * t1
#
# # Check the stopping criterion.
# if ( abs ( x - xm ) <= t2 - (dx <- ( sb - sa ) / 2 ) ) break
#
# r <- 0.0
# p <- q <- r
#
# # Fit a parabola.
# if ( t1 < abs ( e ) ) {
# r <- ( x - w ) * ( fx - fv )
# q <- ( x - v ) * ( fx - fw )
# p <- ( x - v ) * q - ( x - w ) * r
# q <- 2.0 * ( q - r );
#
# if ( 0.0 < q ) p <- - p
#
# q <- abs ( q )
# r <- e
# e <- d
# }
#
# # Is the parabola acceptable
# if ( abs ( p ) < abs ( 0.5 * q * r ) &&
# q * ( sa - x ) < p &&
# p < q * ( sb - x ) ) {
# # Take the parabolic interpolation step.
# d <- p / q
# u <- x + d
#
# # F must not be evaluated too close to a or b.
# if ( ( u - sa ) < t2 | ( sb - u ) < t2 ) {
# d <- if (x < xm) t1 else -t1
# }
#
# } else {
# # A golden-section step.
# e <- if (x < xm) sb - x else a - x
# d <- phi * e
# }
#
# # F must not be evaluated too close to X.
# if ( t1 <= abs ( d ) ) {
# u = x + d
# } else if ( 0.0 < d ) {
# u = x + t1
# } else {
# u = x - t1
# }
#
# fu = f ( u )
#
# # Update a, b, v, x, and x.
# if ( fu <= fx ) {
# if ( u < x ) sb <- x
# else sa <- x
#
# v <- w; fv <- fw
# w <- x; fw <- fx
# x <- u; fx <- fu
#
# } else {
# if ( u < x ) sa <- u
# else sb <- u
#
# if ( fu <= fw || w == x ) {
# v <- w; fv <- fw
# w <- u; fw <- fu
# } else if ( fu <= fv || v == x || v== w ) {
# v <- u; fv <- fu
# }
# }
# niter <- niter + 1
#
# } #endwhile
#
# if (niter > maxiter)
# warning("No. of max. iterations exceeded; no convergence reached.")
#
# if (maximum) fx <- -fx
# return( list(xmin = x, fmin = fx, niter = niter, estim.prec = dx) )
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.