R/hookejeeves.R

Defines functions .hjbexplore .hjbsearch .hjb .hjexplore .hjsearch .hj hooke_jeeves

Documented in hooke_jeeves

##
##  h o o k e j e e v e s . R  Hooke-Jeeves Minimization
##


hooke_jeeves <- function(x0, fn, ..., lb = NULL, ub = NULL, tol = 1e-08,
                         maxfeval = 10000, target = Inf, info = FALSE) {
    if (!is.numeric(x0))
        stop("Argument 'x0' must be a numeric vector.")
    n <- length(x0)
    if (n == 1)
        stop("Do not use Hooke-Jeeves for univariate functions.")

    fun <- match.fun(fn)
    f <- function(x) fun(x, ...)

    if (is.null(lb) && is.null(ub)) {
        result <- .hj(x0, f, tol, target, maxfeval, info)
    } else {
        if (is.null(lb)) lb <- -Inf
        if (is.null(ub)) ub <-  Inf
        if(!is.numeric(lb) || !is.numeric(ub))
            stop("Lower and upper limits must be numeric.", call. = FALSE)
        if (length(lb) == 1) lb <- rep(lb, n)
        if (length(ub) == 1) ub <- rep(ub, n)
        if (!all(lb <= ub))
            stop("All lower limits must be smaller than upper limits.", call. = FALSE)
        if (!all(lb <= x0) || !all(x0 <= ub))
            stop("Infeasible starting values -- check limits.", call. = FALSE)
        
        result <- .hjb(x0, f, lb, ub, tol, target, maxfeval, info)
    }

    res <- list(xmin = result$xmin, fmin = result$fmin, 
                count = result$fcalls, convergence = 0,
                info = list(solver = "Hooke-Jeeves", iterations = result$niter))
    return(res)
}


.hj <- function(x0, f, tol, target, maxfeval, info) {
    n = length(x0)
    #-- Setting steps and stepsize -----
    nsteps <- floor(log2(1/tol))        # number of steps
    steps  <- 2^c(-(0:(nsteps-1)))      # decreasing step size
    dir <- diag(1, n, n)                # orthogonal directions

    x <- x0                             # start point
    fx <- fbest <- f(x)                 # smallest value so far
    fcount <- 1                         # counts number of function calls

    if (info) cat("step\tnofc\tfmin\txpar\n")   # info header

    #-- Start the main loop ------------
    ns <- 0
    while (ns < nsteps && fcount < maxfeval && abs(fx) < target) {
        ns <- ns + 1
        hjs    <- .hjsearch(x, f, steps[ns], dir, fcount, maxfeval, target)
        x      <- hjs$x
        fx     <- hjs$fx
        sf     <- hjs$sf
        fcount <- fcount + hjs$finc

        if (info)
            cat(ns, "\t",  fcount, "\t", fx, "\t", x[1], "...\n")
    }

    if (fcount > maxfeval) {
        warning("Function evaluation limit exceeded -- may not converge.")
        conv <- 1
    } else if (abs(fx) > target) {
        warning("Function exceeds min/max value -- may not converge.")
        conv <- 1
    } else {
        conv <- 0
    }

    return(list(xmin = x, fmin = fx,
                fcalls = fcount, niter = ns, convergence = conv))
}

##  Search with a single scale -----------------------------
.hjsearch <- function(xb, f, h, dir, fcount, maxfeval, target) {
    x  <- xb
    xc <- x
    sf <- 0
    finc <- 0
    hje  <- .hjexplore(xb, xc, f, h, dir)
    x    <- hje$x
    fx   <- hje$fx
    sf   <- hje$sf
    finc <- finc + hje$numf

    # Pattern move
    while (sf == 1) {
        d  <- x-xb
        xb <- x
        xc <- x+d
        fb <- fx
        hje  <- .hjexplore(xb, xc, f, h, dir, fb)
        x    <- hje$x
        fx   <- hje$fx
        sf   <- hje$sf
        finc <- finc + hje$numf

        if (sf == 0) {  # pattern move failed
           hje  <- .hjexplore(xb, xb, f, h, dir, fb)
           x    <- hje$x
           fx   <- hje$fx
           sf   <- hje$sf
           finc <- finc + hje$numf
        }
        if (fcount + finc > maxfeval || abs(fx) > target) break
    }

    return(list(x = x, fx = fx, sf = sf, finc = finc))
}

##  Exploratory move ---------------------------------------
.hjexplore <- function(xb, xc, f, h, dir, fbold) {
    n <- length(xb)
    x <- xb

    if (missing(fbold)) {
        fb <- f(x)
        numf <- 1
    } else {
        fb <- fbold
        numf <- 0
    }

    fx <- fb
    xt <- xc
    sf <- 0                             # do we find a better point ?
    dirh <- h * dir
    fbold <- fx
    for (k in sample.int(n, n)) {       # resample orthogonal directions
        p1 <- xt + dirh[, k]
        ft1 <- f(p1)
        numf <- numf + 1

        p2 <- xt - dirh[, k]
        ft2 <- f(p2)
        numf <- numf + 1

        if (min(ft1, ft2) < fb) {
            sf <- 1
            if (ft1 < ft2) {
                xt <- p1
                fb <- ft1
            } else {
                xt <- p2
                fb <- ft2
            }
        }
    }

    if (sf == 1) {
        x <- xt
        fx <- fb
    }
    return(list(x = x, fx = fx, sf = sf, numf = numf))
}


.hjb <- function(x0, f, lower, upper, tol, target, maxfeval, info) {
    n <- length(x0)
    # checking lower and upper bounds
    if(!is.numeric(lower) || !is.numeric(upper))
        stop("Lower and upper limits must be numeric.", call. = FALSE)
    if (length(lower) == 1) lower <- rep(lower, n)
    if (length(upper) == 1) upper <- rep(upper, n)
    if (!all(lower <= upper))
        stop("All lower limits must be smaller than upper limits.", call. = FALSE)
    if (!all(lower <= x0) || !all(x0 <= upper))
        stop("Infeasible starting values -- check limits.", call. = FALSE)
    
    #-- Setting steps and stepsize -----
    nsteps <- floor(log2(1/tol))        # number of steps
    steps  <- 2^c(-(0:(nsteps-1)))      # decreasing step size
    dir <- diag(1, n, n)                # orthogonal directions

    x <- x0                            # start point
    fx <- fbest <- f(x)                 # smallest value so far
    fcount <- 1                         # counts number of function calls

    if (info) cat("step\tnofc\tfmin\txpar\n")   # info header

    #-- Start the main loop ------------
    ns <- 0
    while (ns < nsteps && fcount < maxfeval && abs(fx) < target) {
        ns <- ns + 1
        hjs    <- .hjbsearch(x, f, lower, upper,
                            steps[ns], dir, fcount, maxfeval, target)
        x      <- hjs$x
        fx     <- hjs$fx
        sf     <- hjs$sf
        fcount <- fcount + hjs$finc

        if (info)
            cat(ns, "\t",  fcount, "\t", fx, "\t", x[1], "...\n")
    }

    if (fcount > maxfeval) {
        warning("Function evaluation limit exceeded -- may not converge.")
        conv <- 1
    } else if (abs(fx) > target) {
        warning("Function exceeds min/max value -- may not converge.")
        conv <- 1
    } else {
        conv <- 0
    }

    return(list(xmin = x, fmin = fx,
                fcalls = fcount, niter = ns, convergence = conv))
}

##  Search with a single scale -----------------------------
.hjbsearch <- function(xb, f, lo, up, h, dir, fcount, maxfeval, target) {
    x  <- xb
    xc <- x
    sf <- 0
    finc <- 0
    hje  <- .hjbexplore(xb, xc, f, lo, up, h, dir)
    x    <- hje$x
    fx   <- hje$fx
    sf   <- hje$sf
    finc <- finc + hje$numf

    # Pattern move
    while (sf == 1) {
        d  <- x-xb
        xb <- x
        xc <- x+d
        xc <- pmax(pmin(xc, up), lo)
        fb <- fx
        hje  <- .hjbexplore(xb, xc, f, lo, up, h, dir, fb)
        x    <- hje$x
        fx   <- hje$fx
        sf   <- hje$sf
        finc <- finc + hje$numf

        if (sf == 0) {  # pattern move failed
           hje  <- .hjbexplore(xb, xb, f, lo, up, h, dir, fb)
           x    <- hje$x
           fx   <- hje$fx
           sf   <- hje$sf
           finc <- finc + hje$numf
        }
        if (fcount + finc > maxfeval || abs(fx) > target) break
    }

    return(list(x = x, fx = fx, sf = sf, finc = finc))
}

##  Exploratory move ---------------------------------------
.hjbexplore <- function(xb, xc, f, lo, up, h, dir, fbold) {
    n <- length(xb)
    x <- xb

    if (missing(fbold)) {
        fb <- f(x)
        numf <- 1
    } else {
        fb <- fbold
        numf <- 0
    }

    fx <- fb
    xt <- xc
    sf <- 0                             # do we find a better point ?
    dirh <- h * dir
    fbold <- fx
    for (k in sample.int(n, n)) {       # resample orthogonal directions
        p1 <- xt + dirh[, k]
        if ( p1[k] <= up[k] ) {
            ft1 <- f(p1)
            numf <- numf + 1
        } else {
            ft1 <- fb
        }

        p2 <- xt - dirh[, k]
        if ( lo[k] <= p2[k] ) {
            ft2 <- f(p2)
            numf <- numf + 1
        } else {
            ft2 <- fb
        }

        if (min(ft1, ft2) < fb) {
            sf <- 1
            if (ft1 < ft2) {
                xt <- p1
                fb <- ft1
            } else {
                xt <- p2
                fb <- ft2
            }
        }
    }

    if (sf == 1) {
        x  <- xt
        fx <- fb
    }

    return(list(x = x, fx = fx, sf = sf, numf = numf))
}

Try the pracma package in your browser

Any scripts or data that you put into this service are public.

pracma documentation built on March 19, 2024, 3:05 a.m.