Nothing
##
## h o r n e r . R Horner Scheme
##
# Horner's rule to compute p(x) and p'(x) vectorized for the
# polynomial p = p_1*x^n + p_2*x^{n-1} + ... + p_n*x + p_{n+1}
horner <- function(p, x) {
if (length(p) == 0 || length(x) == 0) return(NULL)
n <- length(p); m <- length(x)
if (n == 0) { y <- dy <- rep(NA, m) }
else if (n == 1) { y <- rep(p, m); dy <- rep(0, m) }
else {
y <- p[1]; dy <- 0
for (i in 2:n) {
dy <- dy * x + y
y <- y * x + p[i]
}
}
return(list(y = y, dy = dy))
}
# Deflated Horner scheme that returns p(x) and the polynomial q with
# p(x) = q(x) * (x - x0) + r, r constant, and r = 0 if x0 is a root of p.
hornerdefl <- function(p, x) {
if (length(p) == 0 || length(x) == 0) return(NULL)
n <- length(p) -1 # degree of polynomial
q <- numeric(n+1)
q[1] <- p[1]
for (j in 2:(n+1))
q[j] <- p[j] + q[j-1]*x
return(list(y = q[n+1], q = q[1:n]))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.