Animals2 | R Documentation |
A data frame with average brain and body weights for 62 species of land mammals and three others.
Note that this is simply the union of Animals
and mammals
.
Animals2
body
body weight in kg
brain
brain weight in g
After loading the MASS package, the data set is simply constructed by
Animals2 <- local({D <- rbind(Animals, mammals);
unique(D[order(D$body,D$brain),])})
.
Rousseeuw and Leroy (1987)'s ‘brain’ data is the same as
MASS's Animals
(with Rat and Brachiosaurus interchanged,
see the example below).
Weisberg, S. (1985) Applied Linear Regression. 2nd edition. Wiley, pp. 144–5.
P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley, p. 57.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Forth Edition. Springer.
data(Animals2)
## Sensible Plot needs doubly logarithmic scale
plot(Animals2, log = "xy")
## Regression example plot:
plotbb <- function(bbdat) {
d.name <- deparse(substitute(bbdat))
plot(log(brain) ~ log(body), data = bbdat, main = d.name)
abline( lm(log(brain) ~ log(body), data = bbdat))
abline(MASS::rlm(log(brain) ~ log(body), data = bbdat), col = 2)
legend("bottomright", leg = c("lm", "rlm"), col=1:2, lwd=1, inset = 1/20)
}
plotbb(bbdat = Animals2)
## The `same' plot for Rousseeuw's subset:
data(Animals, package = "MASS")
brain <- Animals[c(1:24, 26:25, 27:28),]
plotbb(bbdat = brain)
lbrain <- log(brain)
plot(mahalanobis(lbrain, colMeans(lbrain), var(lbrain)),
main = "Classical Mahalanobis Distances")
mcd <- covMcd(lbrain)
plot(mahalanobis(lbrain,mcd$center,mcd$cov),
main = "Robust (MCD) Mahalanobis Distances")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.