Description Usage Format Details Examples
A number of regional classifications exist, e.g. SRES, Stern, etc. This table can be used to find which grouping a country belongs to, given its country code. A variety of different codes or groupings can be used.
1 |
A data frame with the following variables.
ISO3
ISO 3 letter country code
ADMIN
country name
REGION
7 region continent classification
continent
6 continents classification
GEO3major
Global Environment Outlook GEO3 major region names
GEO3
Global Environment Outlook GEO3 major region names
IMAGE24
Image24 region names
GLOCAF
GLOCAF region names
Stern
Stern report region names
SRESmajor
SRES major region names
SRES
SRES region names
GBD
Global Burden of Disease GBD region names
AVOIDnumeric
numeric codes for AVOID regions
AVOIDname
AVOID regions
LDC
UN Least Developed Countries
SID
UN Small Island Developing states
LLDC
UN Landlocked Developing Countries
Joined onto vector country maps.
Used by country2Region
and mapByRegion
.
1 2 3 4 5 6 7 8 9 | data(countryRegions,envir=environment(),package="rworldmap")
str(countryRegions)
#joining example data onto the regional classifications
data(countryExData,envir=environment(),package="rworldmap")
dF <- merge(countryExData,countryRegions,by.x='ISO3V10',by.y='ISO3')
#plotting ENVHEALTH for Least Developed Countries (LDC) against others
#plot( dF$ENVHEALTH ~ dF$LDC)
#points( y=dF$ENVHEALTH, x=dF$LDC)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.