countryExData: Example dataset for country level data (2008 Environmental...

Description Usage Format Details Source References Examples

Description

A dataframe containing example country level data for 149 countries. This is the 2008 Environmental Performance Index (EPI) downloaded from http://epi.yale.edu/. Used here with permission, further details on the data can be found there. The data are referenced by ISO 3 letter country codes and country names.

Usage

1

Format

A data frame with 149 observations on the following 80 variables.

ISO3V10

a character vector

Country

a character vector

EPI_regions

a character vector

GEO_subregion

a character vector

Population2005

a numeric vector

GDP_capita.MRYA

a numeric vector

landlock

a numeric vector

landarea

a numeric vector

density

a numeric vector

EPI

a numeric vector

ENVHEALTH

a numeric vector

ECOSYSTEM

a numeric vector

ENVHEALTH.1

a numeric vector

AIR_E

a numeric vector

WATER_E

a numeric vector

BIODIVERSITY

a numeric vector

PRODUCTIVE_NATURAL_RESOURCES

a numeric vector

CLIMATE

a numeric vector

DALY_SC

a numeric vector

WATER_H

a numeric vector

AIR_H

a numeric vector

AIR_E.1

a numeric vector

WATER_E.1

a numeric vector

BIODIVERSITY.1

a numeric vector

FOREST

a numeric vector

FISH

a numeric vector

AGRICULTURE

a numeric vector

CLIMATE.1

a numeric vector

ACSAT_pt

a numeric vector

WATSUP_pt

a numeric vector

DALY_pt

a numeric vector

INDOOR_pt

a numeric vector

PM10_pt

a numeric vector

OZONE_H_pt

a numeric vector

SO2_pt

a numeric vector

OZONE_E_pt

a numeric vector

WATQI_pt

a numeric vector

WATSTR_pt

a numeric vector

WATQI_GEMS.station.data

a numeric vector

FORGRO_pt

a numeric vector

CRI_pt

a numeric vector

EFFCON_pt

a numeric vector

AZE_pt

a numeric vector

MPAEEZ_pt

a numeric vector

EEZTD_pt

a numeric vector

MTI_pt

a numeric vector

IRRSTR_pt

a numeric vector

AGINT_pt

a numeric vector

AGSUB_pt

a numeric vector

BURNED_pt

a numeric vector

PEST_pt

a numeric vector

GHGCAP_pt

a numeric vector

CO2IND_pt

a numeric vector

CO2KWH_pt

a numeric vector

ACSAT

a numeric vector

WATSUP

a numeric vector

DALY

a numeric vector

INDOOR

a numeric vector

PM10

a numeric vector

OZONE_H

a numeric vector

SO2

a numeric vector

OZONE_E

a numeric vector

WATQI

a numeric vector

WATQI_GEMS.station.data.1

a numeric vector

WATSTR

a numeric vector

FORGRO

a numeric vector

CRI

a numeric vector

EFFCON

a numeric vector

AZE

a numeric vector

MPAEEZ

a numeric vector

EEZTD

a numeric vector

MTI

a numeric vector

IRRSTR

a numeric vector

AGINT

a numeric vector

AGSUB

a numeric vector

BURNED

a numeric vector

PEST

a numeric vector

GHGCAP

a numeric vector

CO2IND

a numeric vector

CO2KWH

a numeric vector

Details

2008 Environmental Performance Index (EPI) data downloaded from : http://epi.yale.edu/Downloads

Disclaimers This 2008 Environmental Performance Index (EPI) tracks national environmental results on a quantitative basis, measuring proximity to an established set of policy targets using the best data available. Data constraints and limitations in methodology make this a work in progress. Further refinements will be undertaken over the next few years. Comments, suggestions, feedback, and referrals to better data sources are welcome at: http://epi.yale.edu or epi@yale.edu.

Source

http://epi.yale.edu/Downloads

References

Esty, Daniel C., M.A. Levy, C.H. Kim, A. de Sherbinin, T. Srebotnjak, and V. Mara. 2008. 2008 Environmental Performance Index. New Haven: Yale Center for Environmental Law and Policy.

Examples

1
2
data(countryExData,envir=environment(),package="rworldmap")
str(countryExData)

Example output

Loading required package: sp
### Welcome to rworldmap ###
For a short introduction type : 	 vignette('rworldmap')
'data.frame':	149 obs. of  80 variables:
 $ ISO3V10                     : chr  "AGO" "ALB" "ARE" "ARG" ...
 $ Country                     : chr  "Angola" "Albania" "United Arab Emirates            " "Argentina" ...
 $ EPI_regions                 : chr  "Sub-Saharan Africa" "Central and Eastern Europ" "Middle East and North Africa" "Latin America and Caribbe" ...
 $ GEO_subregion               : chr  "Southern Africa" "Central Europe" "Arabian Peninsula" "South America" ...
 $ Population2005              : num  15941 3130 4496 38747 3016 ...
 $ GDP_capita.MRYA             : num  2314 4955 22698 13652 5011 ...
 $ landlock                    : int  0 0 0 0 1 0 1 1 1 0 ...
 $ landarea                    : num  1251896 28346 74777 2736296 28273 ...
 $ density                     : num  0.2 34.3 8.7 1.3 30.3 0.3 16.3 14.6 91 71.2 ...
 $ EPI                         : num  39.5 84 64 81.8 77.8 79.8 89.4 72.2 54.7 78.4 ...
 $ ENVHEALTH                   : num  8.9 89.3 89.8 91.1 88 99.3 98.1 76.4 37.6 98.8 ...
 $ ECOSYSTEM                   : num  70.1 78.6 38.2 72.5 67.5 60.4 80.7 67.9 71.7 58 ...
 $ ENVHEALTH.1                 : num  8.9 89.3 89.8 91.1 88 99.3 98.1 76.4 37.6 98.8 ...
 $ AIR_E                       : num  49.2 99.1 85.1 87.3 99.4 84.9 97 97.7 99.5 50.2 ...
 $ WATER_E                     : num  61.6 96.5 27.1 74.9 28 62.5 79.9 48.5 62.8 52.3 ...
 $ BIODIVERSITY                : num  58.9 4 36.6 33.6 16 78.1 71.6 29 62.5 10 ...
 $ PRODUCTIVE_NATURAL_RESOURCES: num  81.3 79.4 74.1 71.5 82.1 91.8 88.2 85.7 48 76.1 ...
 $ CLIMATE                     : num  74.6 93.4 26.6 82.3 87.2 42.5 79.9 77.1 81.5 69.5 ...
 $ DALY_SC                     : num  0 99.5 98.9 98 98.2 99.6 99.8 93 26.1 99.6 ...
 $ WATER_H                     : num  19.8 91.3 98.8 91.3 83.3 100 100 53.6 44.7 100 ...
 $ AIR_H                       : num  16 66.8 62.4 76.9 72.5 97.9 92.8 66.2 53.5 96 ...
 $ AIR_E.1                     : num  49.2 99.1 85.1 87.3 99.4 84.9 97 97.7 99.5 50.2 ...
 $ WATER_E.1                   : num  61.6 96.5 27.1 74.9 28 62.5 79.9 48.5 62.8 52.3 ...
 $ BIODIVERSITY.1              : num  58.9 4 36.6 33.6 16 78.1 71.6 29 62.5 10 ...
 $ FOREST                      : num  95.4 100 100 75.9 70.1 100 100 100 0 100 ...
 $ FISH                        : num  87.3 62.5 50 58.8 NA 96.7 NA NA NA 47.4 ...
 $ AGRICULTURE                 : num  61.3 75.6 72.3 79.9 94.2 78.7 76.4 71.4 95.9 80.8 ...
 $ CLIMATE.1                   : num  74.6 93.4 26.6 82.3 87.2 42.5 79.9 77.1 81.5 69.5 ...
 $ ACSAT_pt                    : num  19.3 89.5 97.7 89.5 80.1 100 100 46.2 25.1 100 ...
 $ WATSUP_pt                   : num  20.2 93.2 100 93.2 86.4 100 100 61 64.3 100 ...
 $ DALY_pt                     : num  0 99.5 98.9 98 98.2 99.6 99.8 93 26.1 99.6 ...
 $ INDOOR_pt                   : num  0 47.4 94.7 94.7 72.2 94.7 94.7 48.4 0 94.7 ...
 $ PM10_pt                     : num  40 70.1 11.2 51.3 59 100 87.8 67 84.1 95.4 ...
 $ OZONE_H_pt                  : num  0 99.1 100 92.4 100 100 99.2 100 99.4 99.7 ...
 $ SO2_pt                      : num  98.4 98.5 70.2 98.8 98.8 69.9 94.4 95.4 99.3 0.6 ...
 $ OZONE_E_pt                  : num  0 99.8 100 75.7 100 100 99.6 100 99.6 99.8 ...
 $ WATQI_pt                    : num  29.4 93 0 76.4 31.7 75.3 59.8 31.7 25.6 59.6 ...
 $ WATSTR_pt                   : num  98.3 90.3 100 100 100 73.4 100 100 63 100 ...
 $ WATQI_GEMS.station.data     : num  NA 93 NA 76.4 NA 75.3 59.8 NA NA 59.6 ...
 $ FORGRO_pt                   : num  95.4 100 100 75.9 70.1 100 100 100 0 100 ...
 $ CRI_pt                      : num  99.7 5.5 100 39.8 37.7 86.1 80.1 46.2 84.1 9.6 ...
 $ EFFCON_pt                   : num  95.7 1.6 2.3 33.9 10.4 79 63 11.9 40.9 11.5 ...
 $ AZE_pt                      : num  0 NA NA 40 0 69.4 NA NA NA NA ...
 $ MPAEEZ_pt                   : num  14 6 1 2 100 78 100 100 100 0 ...
 $ EEZTD_pt                    : num  74.5 25.1 0 17.5 NA 93.5 NA NA NA 0 ...
 $ MTI_pt                      : num  100 100 100 100 NA 100 NA NA NA 94.9 ...
 $ IRRSTR_pt                   : num  97.5 100 51.8 74.6 97 50.7 100 82.9 100 100 ...
 $ AGINT_pt                    : num  100 90.2 100 78.4 94.5 79.6 63.2 91.1 92 87.1 ...
 $ AGSUB_pt                    : num  100 100 100 100 100 99.9 22.8 100 100 22.8 ...
 $ BURNED_pt                   : num  0 78.9 96.1 55.7 79.5 63.3 96 78.4 87.7 98.6 ...
 $ PEST_pt                     : num  9.1 9.1 13.6 90.9 100 100 100 4.5 100 95.5 ...
 $ GHGCAP_pt                   : num  65.8 98.8 38.6 87.1 98 45.4 81.6 88.7 94 77.7 ...
 $ CO2IND_pt                   : num  95 85 32.1 92.7 78.3 76.2 82.3 97.1 100 59.7 ...
 $ CO2KWH_pt                   : num  63 96.3 9 67 85.1 5.9 75.7 45.6 50.5 71.1 ...
 $ ACSAT                       : num  31 91 98 91 83 100 100 54 36 100 ...
 $ WATSUP                      : num  53 96 100 96 92 100 100 77 79 100 ...
 $ DALY                        : num  109 0.3 0.6 1.1 1 0.2 0.1 3.9 41 0.2 ...
 $ INDOOR                      : num  95 50 5 5 26.4 5 5 49 95 5 ...
 $ PM10                        : num  91.4 55.5 125.6 77.9 68.7 ...
 $ OZONE_H                     : num  4948.8 15.8 0 140.4 0 ...
 $ SO2                         : num  0.7 0.6 12.6 0.5 0.5 12.7 2.4 1.9 0.3 41.9 ...
 $ OZONE_E                     : num  1.36e+09 6.81e+05 2.63e+01 9.96e+07 0.00 ...
 $ WATQI                       : num  57.5 95.8 39.9 85.8 58.9 85.2 75.9 58.9 55.3 75.7 ...
 $ WATQI_GEMS.station.data.1   : num  NA 95.8 NA 85.8 NA 85.2 75.9 NA NA 75.7 ...
 $ WATSTR                      : num  5.5 0 41.6 24.1 68.6 45.7 0 31.4 0 49.8 ...
 $ FORGRO                      : num  1 1 1 0.9 0.9 1 1.1 1 0.6 1.1 ...
 $ CRI                         : num  0.5 0 0.5 0.2 0.2 0.4 0.4 0.2 0.4 0 ...
 $ EFFCON                      : num  9.6 0.2 0.2 3.4 1 7.9 6.3 1.2 4.1 1.2 ...
 $ AZE                         : num  0 NA NA 40 0 69.4 NA NA NA NA ...
 $ MPAEEZ                      : num  1.4 0.6 0.1 0.2 10 7.8 10 10 10 0 ...
 $ EEZTD                       : num  0.255 0.749 1 0.825 NA ...
 $ MTI                         : num  0.0016 0 0.0034 0.0044 NA 0.0014 NA NA NA -0.001 ...
 $ IRRSTR                      : num  2.2 0 41 21.6 2.5 41.9 0 14.6 0 0 ...
 $ AGINT                       : num  0 6.2 0 13.7 3.5 12.9 23.3 5.6 5.1 8.2 ...
 $ AGSUB                       : num  0 0 0 0 0 0 36 0 0 36 ...
 $ BURNED                      : num  15.3 2.9 0.5 6 2.8 5 0.5 2.9 1.7 0.2 ...
 $ PEST                        : num  2 2 3 20 22 22 22 1 22 21 ...
 $ GHGCAP                      : num  20 2.9 34.1 8.9 3.3 30.5 11.8 8.1 5.3 13.8 ...
 $ CO2IND                      : num  1.2 1.9 5.5 1.4 2.3 2.5 2.1 1.1 0.8 3.6 ...
 $ CO2KWH                      : num  343 34 844 306 138 873 225 505 459 268 ...

rworldmap documentation built on May 2, 2019, 4:50 p.m.