Description Usage Format Details Source References Examples
A dataframe containing example country level data for 149 countries. This is the 2008 Environmental Performance Index (EPI) downloaded from http://epi.yale.edu/. Used here with permission, further details on the data can be found there. The data are referenced by ISO 3 letter country codes and country names.
1 |
A data frame with 149 observations on the following 80 variables.
ISO3V10
a character vector
Country
a character vector
EPI_regions
a character vector
GEO_subregion
a character vector
Population2005
a numeric vector
GDP_capita.MRYA
a numeric vector
landlock
a numeric vector
landarea
a numeric vector
density
a numeric vector
EPI
a numeric vector
ENVHEALTH
a numeric vector
ECOSYSTEM
a numeric vector
ENVHEALTH.1
a numeric vector
AIR_E
a numeric vector
WATER_E
a numeric vector
BIODIVERSITY
a numeric vector
PRODUCTIVE_NATURAL_RESOURCES
a numeric vector
CLIMATE
a numeric vector
DALY_SC
a numeric vector
WATER_H
a numeric vector
AIR_H
a numeric vector
AIR_E.1
a numeric vector
WATER_E.1
a numeric vector
BIODIVERSITY.1
a numeric vector
FOREST
a numeric vector
FISH
a numeric vector
AGRICULTURE
a numeric vector
CLIMATE.1
a numeric vector
ACSAT_pt
a numeric vector
WATSUP_pt
a numeric vector
DALY_pt
a numeric vector
INDOOR_pt
a numeric vector
PM10_pt
a numeric vector
OZONE_H_pt
a numeric vector
SO2_pt
a numeric vector
OZONE_E_pt
a numeric vector
WATQI_pt
a numeric vector
WATSTR_pt
a numeric vector
WATQI_GEMS.station.data
a numeric vector
FORGRO_pt
a numeric vector
CRI_pt
a numeric vector
EFFCON_pt
a numeric vector
AZE_pt
a numeric vector
MPAEEZ_pt
a numeric vector
EEZTD_pt
a numeric vector
MTI_pt
a numeric vector
IRRSTR_pt
a numeric vector
AGINT_pt
a numeric vector
AGSUB_pt
a numeric vector
BURNED_pt
a numeric vector
PEST_pt
a numeric vector
GHGCAP_pt
a numeric vector
CO2IND_pt
a numeric vector
CO2KWH_pt
a numeric vector
ACSAT
a numeric vector
WATSUP
a numeric vector
DALY
a numeric vector
INDOOR
a numeric vector
PM10
a numeric vector
OZONE_H
a numeric vector
SO2
a numeric vector
OZONE_E
a numeric vector
WATQI
a numeric vector
WATQI_GEMS.station.data.1
a numeric vector
WATSTR
a numeric vector
FORGRO
a numeric vector
CRI
a numeric vector
EFFCON
a numeric vector
AZE
a numeric vector
MPAEEZ
a numeric vector
EEZTD
a numeric vector
MTI
a numeric vector
IRRSTR
a numeric vector
AGINT
a numeric vector
AGSUB
a numeric vector
BURNED
a numeric vector
PEST
a numeric vector
GHGCAP
a numeric vector
CO2IND
a numeric vector
CO2KWH
a numeric vector
2008 Environmental Performance Index (EPI) data downloaded from : http://epi.yale.edu/Downloads
Disclaimers This 2008 Environmental Performance Index (EPI) tracks national environmental results on a quantitative basis, measuring proximity to an established set of policy targets using the best data available. Data constraints and limitations in methodology make this a work in progress. Further refinements will be undertaken over the next few years. Comments, suggestions, feedback, and referrals to better data sources are welcome at: http://epi.yale.edu or epi@yale.edu.
http://epi.yale.edu/Downloads
Esty, Daniel C., M.A. Levy, C.H. Kim, A. de Sherbinin, T. Srebotnjak, and V. Mara. 2008. 2008 Environmental Performance Index. New Haven: Yale Center for Environmental Law and Policy.
1 2 | data(countryExData,envir=environment(),package="rworldmap")
str(countryExData)
|
Loading required package: sp
### Welcome to rworldmap ###
For a short introduction type : vignette('rworldmap')
'data.frame': 149 obs. of 80 variables:
$ ISO3V10 : chr "AGO" "ALB" "ARE" "ARG" ...
$ Country : chr "Angola" "Albania" "United Arab Emirates " "Argentina" ...
$ EPI_regions : chr "Sub-Saharan Africa" "Central and Eastern Europ" "Middle East and North Africa" "Latin America and Caribbe" ...
$ GEO_subregion : chr "Southern Africa" "Central Europe" "Arabian Peninsula" "South America" ...
$ Population2005 : num 15941 3130 4496 38747 3016 ...
$ GDP_capita.MRYA : num 2314 4955 22698 13652 5011 ...
$ landlock : int 0 0 0 0 1 0 1 1 1 0 ...
$ landarea : num 1251896 28346 74777 2736296 28273 ...
$ density : num 0.2 34.3 8.7 1.3 30.3 0.3 16.3 14.6 91 71.2 ...
$ EPI : num 39.5 84 64 81.8 77.8 79.8 89.4 72.2 54.7 78.4 ...
$ ENVHEALTH : num 8.9 89.3 89.8 91.1 88 99.3 98.1 76.4 37.6 98.8 ...
$ ECOSYSTEM : num 70.1 78.6 38.2 72.5 67.5 60.4 80.7 67.9 71.7 58 ...
$ ENVHEALTH.1 : num 8.9 89.3 89.8 91.1 88 99.3 98.1 76.4 37.6 98.8 ...
$ AIR_E : num 49.2 99.1 85.1 87.3 99.4 84.9 97 97.7 99.5 50.2 ...
$ WATER_E : num 61.6 96.5 27.1 74.9 28 62.5 79.9 48.5 62.8 52.3 ...
$ BIODIVERSITY : num 58.9 4 36.6 33.6 16 78.1 71.6 29 62.5 10 ...
$ PRODUCTIVE_NATURAL_RESOURCES: num 81.3 79.4 74.1 71.5 82.1 91.8 88.2 85.7 48 76.1 ...
$ CLIMATE : num 74.6 93.4 26.6 82.3 87.2 42.5 79.9 77.1 81.5 69.5 ...
$ DALY_SC : num 0 99.5 98.9 98 98.2 99.6 99.8 93 26.1 99.6 ...
$ WATER_H : num 19.8 91.3 98.8 91.3 83.3 100 100 53.6 44.7 100 ...
$ AIR_H : num 16 66.8 62.4 76.9 72.5 97.9 92.8 66.2 53.5 96 ...
$ AIR_E.1 : num 49.2 99.1 85.1 87.3 99.4 84.9 97 97.7 99.5 50.2 ...
$ WATER_E.1 : num 61.6 96.5 27.1 74.9 28 62.5 79.9 48.5 62.8 52.3 ...
$ BIODIVERSITY.1 : num 58.9 4 36.6 33.6 16 78.1 71.6 29 62.5 10 ...
$ FOREST : num 95.4 100 100 75.9 70.1 100 100 100 0 100 ...
$ FISH : num 87.3 62.5 50 58.8 NA 96.7 NA NA NA 47.4 ...
$ AGRICULTURE : num 61.3 75.6 72.3 79.9 94.2 78.7 76.4 71.4 95.9 80.8 ...
$ CLIMATE.1 : num 74.6 93.4 26.6 82.3 87.2 42.5 79.9 77.1 81.5 69.5 ...
$ ACSAT_pt : num 19.3 89.5 97.7 89.5 80.1 100 100 46.2 25.1 100 ...
$ WATSUP_pt : num 20.2 93.2 100 93.2 86.4 100 100 61 64.3 100 ...
$ DALY_pt : num 0 99.5 98.9 98 98.2 99.6 99.8 93 26.1 99.6 ...
$ INDOOR_pt : num 0 47.4 94.7 94.7 72.2 94.7 94.7 48.4 0 94.7 ...
$ PM10_pt : num 40 70.1 11.2 51.3 59 100 87.8 67 84.1 95.4 ...
$ OZONE_H_pt : num 0 99.1 100 92.4 100 100 99.2 100 99.4 99.7 ...
$ SO2_pt : num 98.4 98.5 70.2 98.8 98.8 69.9 94.4 95.4 99.3 0.6 ...
$ OZONE_E_pt : num 0 99.8 100 75.7 100 100 99.6 100 99.6 99.8 ...
$ WATQI_pt : num 29.4 93 0 76.4 31.7 75.3 59.8 31.7 25.6 59.6 ...
$ WATSTR_pt : num 98.3 90.3 100 100 100 73.4 100 100 63 100 ...
$ WATQI_GEMS.station.data : num NA 93 NA 76.4 NA 75.3 59.8 NA NA 59.6 ...
$ FORGRO_pt : num 95.4 100 100 75.9 70.1 100 100 100 0 100 ...
$ CRI_pt : num 99.7 5.5 100 39.8 37.7 86.1 80.1 46.2 84.1 9.6 ...
$ EFFCON_pt : num 95.7 1.6 2.3 33.9 10.4 79 63 11.9 40.9 11.5 ...
$ AZE_pt : num 0 NA NA 40 0 69.4 NA NA NA NA ...
$ MPAEEZ_pt : num 14 6 1 2 100 78 100 100 100 0 ...
$ EEZTD_pt : num 74.5 25.1 0 17.5 NA 93.5 NA NA NA 0 ...
$ MTI_pt : num 100 100 100 100 NA 100 NA NA NA 94.9 ...
$ IRRSTR_pt : num 97.5 100 51.8 74.6 97 50.7 100 82.9 100 100 ...
$ AGINT_pt : num 100 90.2 100 78.4 94.5 79.6 63.2 91.1 92 87.1 ...
$ AGSUB_pt : num 100 100 100 100 100 99.9 22.8 100 100 22.8 ...
$ BURNED_pt : num 0 78.9 96.1 55.7 79.5 63.3 96 78.4 87.7 98.6 ...
$ PEST_pt : num 9.1 9.1 13.6 90.9 100 100 100 4.5 100 95.5 ...
$ GHGCAP_pt : num 65.8 98.8 38.6 87.1 98 45.4 81.6 88.7 94 77.7 ...
$ CO2IND_pt : num 95 85 32.1 92.7 78.3 76.2 82.3 97.1 100 59.7 ...
$ CO2KWH_pt : num 63 96.3 9 67 85.1 5.9 75.7 45.6 50.5 71.1 ...
$ ACSAT : num 31 91 98 91 83 100 100 54 36 100 ...
$ WATSUP : num 53 96 100 96 92 100 100 77 79 100 ...
$ DALY : num 109 0.3 0.6 1.1 1 0.2 0.1 3.9 41 0.2 ...
$ INDOOR : num 95 50 5 5 26.4 5 5 49 95 5 ...
$ PM10 : num 91.4 55.5 125.6 77.9 68.7 ...
$ OZONE_H : num 4948.8 15.8 0 140.4 0 ...
$ SO2 : num 0.7 0.6 12.6 0.5 0.5 12.7 2.4 1.9 0.3 41.9 ...
$ OZONE_E : num 1.36e+09 6.81e+05 2.63e+01 9.96e+07 0.00 ...
$ WATQI : num 57.5 95.8 39.9 85.8 58.9 85.2 75.9 58.9 55.3 75.7 ...
$ WATQI_GEMS.station.data.1 : num NA 95.8 NA 85.8 NA 85.2 75.9 NA NA 75.7 ...
$ WATSTR : num 5.5 0 41.6 24.1 68.6 45.7 0 31.4 0 49.8 ...
$ FORGRO : num 1 1 1 0.9 0.9 1 1.1 1 0.6 1.1 ...
$ CRI : num 0.5 0 0.5 0.2 0.2 0.4 0.4 0.2 0.4 0 ...
$ EFFCON : num 9.6 0.2 0.2 3.4 1 7.9 6.3 1.2 4.1 1.2 ...
$ AZE : num 0 NA NA 40 0 69.4 NA NA NA NA ...
$ MPAEEZ : num 1.4 0.6 0.1 0.2 10 7.8 10 10 10 0 ...
$ EEZTD : num 0.255 0.749 1 0.825 NA ...
$ MTI : num 0.0016 0 0.0034 0.0044 NA 0.0014 NA NA NA -0.001 ...
$ IRRSTR : num 2.2 0 41 21.6 2.5 41.9 0 14.6 0 0 ...
$ AGINT : num 0 6.2 0 13.7 3.5 12.9 23.3 5.6 5.1 8.2 ...
$ AGSUB : num 0 0 0 0 0 0 36 0 0 36 ...
$ BURNED : num 15.3 2.9 0.5 6 2.8 5 0.5 2.9 1.7 0.2 ...
$ PEST : num 2 2 3 20 22 22 22 1 22 21 ...
$ GHGCAP : num 20 2.9 34.1 8.9 3.3 30.5 11.8 8.1 5.3 13.8 ...
$ CO2IND : num 1.2 1.9 5.5 1.4 2.3 2.5 2.1 1.1 0.8 3.6 ...
$ CO2KWH : num 343 34 844 306 138 873 225 505 459 268 ...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.