Description Usage Arguments Value References Examples
sobol2002 implements the Monte Carlo estimation of
the Sobol' indices for both first-order and total indices at the same
time (alltogether 2p indices), at a total cost of (p + 2) * n model evaluations.
1 2 3 4 5 6 7 |
model |
a function, or a model with a |
X1 |
the first random sample. |
X2 |
the second random sample. |
nboot |
the number of bootstrap replicates. |
conf |
the confidence level for bootstrap confidence intervals. |
x |
a list of class |
y |
a vector of model responses. |
return.var |
a vector of character strings giving further
internal variables names to store in the output object |
ylim |
y-coordinate plotting limits. |
... |
any other arguments for |
sobol2002 returns a list of class "sobol2002", containing all
the input arguments detailed before, plus the following components:
call |
the matched call. |
X |
a |
y |
the response used |
V |
the estimations of Variances of the Conditional Expectations (VCE) with respect to each factor and also with respect to the complementary set of each factor ("all but Xi"). |
S |
the estimations of the Sobol' first-order indices. |
T |
the estimations of the Sobol' total sensitivity indices. |
Users can ask more ouput variables with the argument
return.var (for example, bootstrap outputs V.boot,
S.boot and T.boot).
A. Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communication, 145, 580–297.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | # Test case : the non-monotonic Sobol g-function
# The method of sobol requires 2 samples
# There are 8 factors, all following the uniform distribution
# on [0,1]
n <- 1000
X1 <- data.frame(matrix(runif(8 * n), nrow = n))
X2 <- data.frame(matrix(runif(8 * n), nrow = n))
# sensitivity analysis
x <- sobol2002(model = sobol.fun, X1, X2, nboot = 100)
print(x)
plot(x)
|

Call:
sobol2002(model = sobol.fun, X1 = X1, X2 = X2, nboot = 100)
Model runs: 10000
First order indices:
original bias std. error min. c.i. max. c.i.
X1 0.772663777 -3.505939e-04 0.0735226793 0.5941208077 0.931199301
X2 0.181521631 4.835765e-03 0.0428905091 0.0885254055 0.259131025
X3 0.032407185 -1.124696e-03 0.0150697862 0.0017941259 0.058114904
X4 0.007928388 -4.749885e-04 0.0085572470 -0.0102727687 0.026694593
X5 0.000455648 3.136872e-05 0.0007955689 -0.0014202715 0.001919533
X6 0.002572585 -3.051926e-05 0.0006641615 0.0012351322 0.003883425
X7 0.002644076 1.061585e-04 0.0009785932 0.0007101465 0.004512303
X8 0.001962201 5.097122e-05 0.0008890980 0.0001361504 0.003671878
Total indices:
original bias std. error min. c.i. max. c.i.
X1 0.6890511145 5.425975e-06 0.058730781 0.581259379 0.821196296
X2 0.2217119642 -5.534338e-03 0.052271693 0.136215148 0.347241490
X3 0.0344540099 -1.138559e-03 0.024066477 -0.013418609 0.089228372
X4 0.0164565906 1.218419e-03 0.011754435 -0.005732779 0.042893826
X5 -0.0002920481 -1.112492e-05 0.001184130 -0.002517972 0.002187899
X6 -0.0041463566 4.704660e-05 0.001044492 -0.006396229 -0.002198296
X7 -0.0041774574 -9.950025e-05 0.001204040 -0.006646766 -0.001913350
X8 -0.0013667056 -1.527023e-04 0.001303396 -0.003761693 0.001161511
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.