| coef.sgl | Extracting the nonzero coefficients |
| compute_error | Helper function for computing error rates |
| create.sgldata | Create a sgldata object |
| Err | Generic function for computing error rates |
| features | Generic function for extracting nonzero features (or groups) |
| features.sgl | Extracting nonzero features |
| models | Generic function for extracting the fitted models |
| models.sgl | Returns the estimated models (that is the beta matrices) |
| nmod | Generic function for counting the number of models |
| nmod.sgl | Returns the number of models in a sgl object |
| parameters | Generic function for extracting nonzero parameters |
| parameters.sgl | Extracting nonzero parameters |
| prepare.args | Generic function for preparing the sgl call arguments |
| prepare.args.sgldata | Prepare sgl function arguments |
| print_with_metric_prefix | Print a numeric with metric prefix |
| rearrange | Generic rearrange function |
| rearrange.sgldata | Rearrange sgldata |
| sgl.algorithm.config | Create a new algorithm configuration |
| sgl_cv | Generic sparse group lasso cross validation using multiple... |
| sgl_fit | Fit a sparse group lasso regularization path. |
| sgl_lambda_sequence | Generic routine for computing a lambda sequence for the... |
| sgl_predict | Sgl predict |
| sgl_print | Print information about sgl object |
| sgl.standard.config | Standard algorithm configuration |
| sgl_subsampling | Generic sparse group lasso subsampling procedure |
| test.data | Simulated data set |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.