sgl_cv: Generic sparse group lasso cross validation using multiple...

Description Usage Arguments Value Author(s)

Description

Generic sparse group lasso cross validation using multiple possessors

Usage

1
2
3
sgl_cv(module_name, PACKAGE, data, parameterGrouping, groupWeights,
  parameterWeights, alpha, lambda, fold = 2, cv.indices = list(),
  max.threads = 2, algorithm.config = sgl.standard.config)

Arguments

module_name

reference to objective specific C++ routines.

PACKAGE

name of the calling package.

data

a list of data objects – will be parsed to the specified module.

parameterGrouping

grouping of parameters, a vector of length p. Each element of the vector specifying the group of the parameters in the corresponding column of β.

groupWeights

the group weights, a vector of length length(unique(parameterGrouping)) (the number of groups).

parameterWeights

a matrix of size q \times p.

alpha

the α value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group lasso penalty.

lambda

the lambda sequence for the regularization path.

fold

the fold of the cross validation, an integer larger than 1 and less than N+1. Ignored if cv.indices != NULL. If foldmax(table(classes)) then the data will be split into fold disjoint subsets keeping the ration of classes approximately equal. Otherwise the data will be split into fold disjoint subsets without keeping the ration fixed.

cv.indices

a list of indices of a cross validation splitting. If cv.indices = NULL then a random splitting will be generated using the fold argument.

max.threads

the maximal number of threads to be used.

algorithm.config

the algorithm configuration to be used.

Value

responses

content will depend on the C++ response class

cv.indices

the cross validation splitting used

features

number of features used in the models

parameters

number of parameters used in the models

lambda

the lambda sequence used.

Author(s)

Martin Vincent


sglOptim documentation built on May 2, 2019, 5:55 p.m.

Related to sgl_cv in sglOptim...