Description Usage Arguments Value Author(s)
Generic sparse group lasso cross validation using multiple possessors
1 2 3 | sgl_cv(module_name, PACKAGE, data, parameterGrouping, groupWeights,
parameterWeights, alpha, lambda, fold = 2, cv.indices = list(),
max.threads = 2, algorithm.config = sgl.standard.config)
|
module_name |
reference to objective specific C++ routines. |
PACKAGE |
name of the calling package. |
data |
a list of data objects – will be parsed to the specified module. |
parameterGrouping |
grouping of parameters, a vector of length p. Each element of the vector specifying the group of the parameters in the corresponding column of β. |
groupWeights |
the group weights, a vector of length |
parameterWeights |
a matrix of size q \times p. |
alpha |
the α value 0 for group lasso, 1 for lasso, between 0 and 1 gives a sparse group lasso penalty. |
lambda |
the lambda sequence for the regularization path. |
fold |
the fold of the cross validation, an integer larger than 1 and less than N+1. Ignored if |
cv.indices |
a list of indices of a cross validation splitting.
If |
max.threads |
the maximal number of threads to be used. |
algorithm.config |
the algorithm configuration to be used. |
responses |
content will depend on the C++ response class |
cv.indices |
the cross validation splitting used |
features |
number of features used in the models |
parameters |
number of parameters used in the models |
lambda |
the lambda sequence used. |
Martin Vincent
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.