| normgibbs | R Documentation | 
This function runs a simple Gibbs sampler for the Bayesian posterior distribution of the mean and precision given a normal random sample.
normgibbs(N, n, a, b, cc, d, xbar, ssquared)
N | 
 The number of iterations of the Gibbs sampler.  | 
n | 
 The sample size of the normal random sample.  | 
a | 
 The shape parameter of the gamma prior on the sample precision.  | 
b | 
 The scale parameter of the gamma prior on the sample precision.  | 
cc | 
 The mean of the normal prior on the sample mean.  | 
d | 
 The precision of the normal prior on the sample mean.  | 
xbar | 
 The sample mean of the data. eg.   | 
ssquared | 
 The sample variance of the data. eg.   | 
An R matrix object containing the samples of the Gibbs sampler.
rcfmc, metrop, mcmcSummary
postmat=normgibbs(N=1100,n=15,a=3,b=11,cc=10,d=1/100,xbar=25,ssquared=20)
postmat=postmat[101:1100,]
op=par(mfrow=c(3,3))
plot(postmat)
plot(postmat,type="l")
plot.new()
plot(ts(postmat[,1]))
plot(ts(postmat[,2]))
plot(ts(sqrt(1/postmat[,2])))
hist(postmat[,1],30)
hist(postmat[,2],30)
hist(sqrt(1/postmat[,2]),30)
par(op)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.