uniquifyFeatureNames: Make feature names unique

BIOC
scuttle: Single-Cell RNA-Seq Analysis Utilities

(e.g., Ensembl) for use as row names.
Usage
uniquifyFeatureNames(ID, names)

uniquifyFeatureNames: Make feature names unique

GITHUB
LTLA/scuttle: Single-Cell RNA-Seq Analysis Utilities

and valid (e.g., Ensembl) for use as row names.
Usage
uniquifyFeatureNames(ID, names)

tests/testthat/test-feat-proc.R:

BIOC
scuttle: Single-Cell RNA-Seq Analysis Utilities

all.ids <- paste0("GENE", seq_along(all.genes))
out <- uniquifyFeatureNames(all.ids, all.genes

tests/testthat/test-feat-proc.R:

GITHUB
LTLA/scuttle: Single-Cell RNA-Seq Analysis Utilities

all.ids <- paste0("GENE", seq_along(all.genes))
out <- uniquifyFeatureNames(all.ids, all.genes

R/uniquifyFeatureNames.R:

GITHUB
LTLA/scuttle: Single-Cell RNA-Seq Analysis Utilities

#' uniquifyFeatureNames(
#' ID=paste0("ENSG0000000", 1:5),
#' names=c("A", NA, "B", "C", "A")

R/heatmap.R:

GITHUB
ge11232002/OlinkR: A toolkit for Olink data analysis

passed to \code{pheatmap}.
#' @importFrom pheatmap pheatmap
#' @importFrom scater uniquifyFeatureNames

R/uniquifyFeatureNames.R:

BIOC
scuttle: Single-Cell RNA-Seq Analysis Utilities

#' uniquifyFeatureNames(
#' ID=paste0("ENSG0000000", 1:5),
#' names=c("A", NA, "B", "C", "A")

reexports: Objects exported from other packages

BIOC
scater: Single-Cell Analysis Toolkit for Gene Expression Data in R

, perCellQCMetrics, perFeatureQCMetrics, quickPerCellQC, readSparseCounts, sumCountsAcrossCells, sumCountsAcrossFeatures, uniquifyFeatureNames

R/io_10x.R:

GITHUB
keshav-motwani/scanalysis: Multi-Sample Visualization and Immune Repertoire Analysis Utilities for Single-Cell Data

#'
#' @importFrom DropletUtils read10xCounts
#' @importFrom scater uniquifyFeatureNames

R/reexports.R:

BIOC
scater: Single-Cell Analysis Toolkit for Gene Expression Data in R

#' @export
scuttle::sumCountsAcrossFeatures
#' @export

R/io_10x.R:

GITHUB
keshavmot2/scanalysis: Multi-Sample Visualization and Immune Repertoire Analysis Utilities for Single-Cell Data

#'
#' @importFrom DropletUtils read10xCounts
#' @importFrom scater uniquifyFeatureNames

R/readVisium.R:

BIOC
BayesSpace: Clustering and Resolution Enhancement of Spatial Transcriptomes

/to/outs/")
#' }
#'

ens2sym: Convert Ensembl IDs to gene symbols

GITHUB
vari-bbc/bbcRNA: Bulk RNA-seq workflow for VAI BBC

::uniquifyFeatureNames.
Genes with multiple possible symbols will be labelled as Ensembl ID.
Genes absent from OrgDb/Biomart will be labelled as Ensembl ID.

R/PCA.R:

GITHUB
ge11232002/OlinkR: A toolkit for Olink data analysis

#' @importFrom scater uniquifyFeatureNames
#' @importFrom ggplot2 geom_text aes
#' @importMethodsFrom SummarizedExperiment assay

inst/doc/Seurat_schex.R:

BIOC
schex: Hexbin plots for single cell omics data

= "pbmc3k")
rownames(tenx_pbmc3k) <- uniquifyFeatureNames(rowData(tenx_pbmc3k)$ENSEMBL_ID,
rowData(tenx_pbmc3k

inst/doc/picking_the_right_resolution.R:

BIOC
schex: Hexbin plots for single cell omics data

")
# rownames(tenx_pbmc3k) <- uniquifyFeatureNames(rowData(tenx_pbmc3k)$ENSEMBL_ID,
# rowData(tenx_pbmc3k

inst/scripts/make-data_Kang18.R:

GITHUB
HelenaLC/muscData: Multi-sample multi-group scRNA-seq data

, uniquifyFeatureNames(ENSEMBL, SYMBOL))
# pull reduced dimensions
k <- c("tsne1", "tsne2")

inst/doc/introduction.R:

BIOC
Nebulosa: Single-Cell Data Visualisation Using Kernel Gene-Weighted Density Estimation

"
## ----rename_rows--------------------------------------------------------------
rownames(pbmc) <- uniquifyFeatureNames(rowData(pbmc

inst/doc/overview.R:

BIOC
scuttle: Single-Cell RNA-Seq Analysis Utilities

-missing symbols:
rownames(sce.ens) <- uniquifyFeatureNames(
rownames(sce.ens), rowData(sce.ens)$originalName

inst/doc/using_schex.R:

BIOC
schex: Hexbin plots for single cell omics data

<- TENxPBMCData(dataset = "pbmc3k")
rownames(tenx_pbmc3k) <- uniquifyFeatureNames(rowData(tenx_pbmc3k)$ENSEMBL_ID,
rowData