inst/doc/using_schex.R

## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
    collapse = TRUE,
    comment = "#>"
)
library(ggplot2)
theme_set(theme_classic())

## ----setup, message=FALSE-----------------------------------------------------
library(igraph)
library(schex)
library(TENxPBMCData)
library(scater)
library(scran)
library(ggrepel)

## ----load---------------------------------------------------------------------
tenx_pbmc3k <- TENxPBMCData(dataset = "pbmc3k")

rownames(tenx_pbmc3k) <- uniquifyFeatureNames(rowData(tenx_pbmc3k)$ENSEMBL_ID, 
    rowData(tenx_pbmc3k)$Symbol_TENx)

## ----filter-cells-------------------------------------------------------------
rowData(tenx_pbmc3k)$Mito <- grepl("^MT-", rownames(tenx_pbmc3k))
colData(tenx_pbmc3k) <- cbind(colData(tenx_pbmc3k), 
    perCellQCMetrics(tenx_pbmc3k, 
        subsets=list(Mt=rowData(tenx_pbmc3k)$Mito)))
rowData(tenx_pbmc3k) <- cbind(rowData(tenx_pbmc3k), 
    perFeatureQCMetrics(tenx_pbmc3k))

tenx_pbmc3k <- tenx_pbmc3k[, !colData(tenx_pbmc3k)$subsets_Mt_percent > 50]

libsize_drop <- isOutlier(tenx_pbmc3k$total,
      nmads = 3,type = "lower", log = TRUE)
feature_drop <- isOutlier(tenx_pbmc3k$detected,
    nmads = 3, type = "lower", log = TRUE)

tenx_pbmc3k <- tenx_pbmc3k[, !(libsize_drop | feature_drop)]

## ----filter-genes-------------------------------------------------------------
rm_ind <- calculateAverage(tenx_pbmc3k)<0
tenx_pbmc3k <- tenx_pbmc3k[!rm_ind,]

## ----norm, message=FALSE, warning=FALSE---------------------------------------
tenx_pbmc3k <- scater::logNormCounts(tenx_pbmc3k)

## ----dim-red, message=FALSE, warning=FALSE------------------------------------
tenx_pbmc3k <- runPCA(tenx_pbmc3k)
set.seed(10)
tenx_pbmc3k <- runUMAP(tenx_pbmc3k, dimred = "PCA", spread = 1, 
    min_dist = 0.4)

## ----cluster------------------------------------------------------------------
snn_gr <- buildSNNGraph(tenx_pbmc3k, use.dimred = "PCA", k = 50)
clusters <- cluster_louvain(snn_gr)
tenx_pbmc3k$cluster <- factor(clusters$membership)

## ----calc-hexbin--------------------------------------------------------------
tenx_pbmc3k <- make_hexbin(tenx_pbmc3k, nbins = 40, 
    dimension_reduction = "UMAP", use_dims=c(1,2))

## ----plot-density, fig.height=7, fig.width=7----------------------------------
plot_hexbin_density(tenx_pbmc3k)

## ----plot-meta, fig.height=7, fig.width=7-------------------------------------
plot_hexbin_meta(tenx_pbmc3k, col="cluster", action="majority")
plot_hexbin_meta(tenx_pbmc3k, col="total", action="median")

## ----plot-meta-trad, fig.height=7, fig.width=7--------------------------------
plotUMAP(tenx_pbmc3k, colour_by="cluster")
plotUMAP(tenx_pbmc3k, colour_by="total")

## ----plot-meta-label, message=FALSE, fig.height=7, fig.width=7----------------
label_df <- make_hexbin_label(tenx_pbmc3k, col="cluster")
pp <- plot_hexbin_meta(tenx_pbmc3k, col="cluster", action="majority") 
pp + ggrepel::geom_label_repel(data = label_df, aes(x=x, y=y, label = label), 
    colour="black",  label.size = NA, fill = NA)  

## ----plot-gene, fig.height=7, fig.width=7-------------------------------------
gene_id <-"POMGNT1"
plot_hexbin_feature(tenx_pbmc3k, type="logcounts", feature=gene_id, 
    action="mean", xlab="UMAP1", ylab="UMAP2", 
    title=paste0("Mean of ", gene_id))

## ----plot-gene-trad, fig.height=7, fig.width=7--------------------------------
plotUMAP(tenx_pbmc3k, by_exprs_values="logcounts", colour_by=gene_id)

## ---- message=FALSE, fig.height=7, fig.width=7--------------------------------
plot_hexbin_feature_plus(tenx_pbmc3k,
    col="cluster", type="logcounts",
    feature="POMGNT1", action="mean")

## -----------------------------------------------------------------------------
gene_id <-"CD19"
gg <- schex::plot_hexbin_feature(tenx_pbmc3k, type="logcounts", feature=gene_id, 
    action="mean", xlab="UMAP1", ylab="UMAP2", 
    title=paste0("Mean of ", gene_id))
gg + theme_void()

## ---- eval=FALSE--------------------------------------------------------------
#  ggsave(gg, file="schex_plot.pdf")

Try the schex package in your browser

Any scripts or data that you put into this service are public.

schex documentation built on Nov. 8, 2020, 5:56 p.m.