Description Usage Arguments Value Author(s) References See Also Examples
Algorithm for Module Identification on multi-layer network sharing the same set of genes
1 2 | moduleIdentificationGPFixSSMultilayer(W, listz, x0, a = 0.5, lambda = 1,
maxiter = 1000)
|
W |
edge score matrix of the network, n x n matrix |
listz |
a list of node score vectors, each layer has a n-length vector |
x0 |
initial solution, n-length vector |
a |
parameter in elastic net the same as in |
lambda |
parameter in objective, coefficient of node score of other layers |
maxiter |
maximal interation of whole procedure |
a list containing objective values and solution
Dong Li, dxl466@cs.bham.ac.uk
AMOUNTAIN
moduleIdentificationGPFixSSMultilayer
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | n = 100
k = 20
L = 5
theta = 0.5
cpl <- multilayernetworkSimulation(n,k,theta,L)
listz <- list()
for (i in 1:L){
listz[[i]] <- cpl[[i+2]]
}
moduleid <- cpl[[2]]
## use default parameters here
x <- moduleIdentificationGPFixSSMultilayer(cpl[[1]],listz,rep(1/n,n))
predictedid <- which(x[[2]]!=0)
recall <- length(intersect(predictedid,moduleid))/length(moduleid)
precise <- length(intersect(predictedid,moduleid))/length(predictedid)
Fscore <- (2*precise*recall/(precise+recall))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.