BANDITS
is a Bayesian hierarchical model for detecting differential splicing of genes and transcripts,
via differential transcript usage (DTU),
between two or more conditions.
The method uses a Bayesian hierarchical framework, which allows for sample specific proportions
in a Dirichlet-multinomial model, and samples the allocation of fragments to the transcripts.
Parameters are inferred via Markov chain Monte Carlo (MCMC) techniques and a DTU test is performed
via a multivariate Wald test on the posterior densities for the average relative abundance of transcripts.
Simone Tiberi and Mark D Robinson (2020). BANDITS: Bayesian differential splicing accounting for sample-to-sample variability and mapping uncertainty.
Genome Biology 21 (69). doi: 10.1186/s13059-020-01967-8
BANDITS
is available on Bioconductor and can be installed with the command:
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("BANDITS")
To install the latest development version of the package from github, use devtools
(available here):
devtools::install_github("SimoneTiberi/BANDITS")
To install the package jointly with its vignette remove --no-build-vignettes
from build_opts
:
devtools::install_github("SimoneTiberi/BANDITS", build_opts = c("--no-resave-data", "--no-manual"))
The vignette illustrating how to use the package can be accessed on the Bioconductor website or from R via:
vignette("BANDITS")
or
browseVignettes("BANDITS")
The package inputs the equivalence classes and respective counts, representing what transcripts each read is compatible with.
These can be obtained by aligning reads either directly to a reference transcriptome with pseudo-alignmers, via salmon
or kallisto
, or to a reference genome with splice-aware genome alignment algorithms, via STAR
, and checking the transcripts compatible with each genome alignment with salmon
NOTE: when using salmon
, use the option --dumpEq
to obtain the equivalence classes, when using STAR
, use the option --quantMode TranscriptomeSAM
to obtain alignments translated into transcript coordinates, and when using kallisto
, run both the quant
and pseudo
modes to obtain the transcript estimated counts and equivalence classes, respectively.
Below we show three pipelines for aligning reads with salmon
, kallisto
and STAR
.
To obtain the example raw data, download or clone the ARMOR github repository:
git clone https://github.com/csoneson/ARMOR.git
# set a base_dir variable to the downloaded repo
base_dir="~/ARMOR"
# input reads:
fastq_files=$base_dir/example_data/FASTQ
The example data consits of four paired-end RNA-seq reads of 63 base pairs.
Create a variable for the fasta format reference transcriptome (cDNA):
fasta_tr=$base_dir/example_data/reference/Ensembl.GRCh38.93/Homo_sapiens.GRCh38.cdna.all.1.1.10M.fa.gz
Make the directory for the salmon output and the genome index
# create a directory for salmon
mkdir $base_dir/salmon
# create a directory for the genome index
mkdir $base_dir/salmon/Salmon_index
idx=$base_dir/salmon/Salmon_index
# create a directory for the output of the alignment
mkdir $base_dir/salmon/alignment
out_Salmon=$base_dir/salmon/alignment
Build salmon index
salmon index -i $idx -t $fasta_tr -p 4 --type quasi -k 31
Align reads and quantify transcript abundance with salmon:
salmon quant -i $idx -l A -1 $fastq_files/SRR1039508_R1.fastq.gz -2 $fastq_files/SRR1039508_R2.fastq.gz \
-p 4 -o $out_Salmon/sample1 --seqBias --gcBias --dumpEq
The option --dumpEq
is essential to obtain the equivalence classes from salmon.
In the output folder ($out_Salmon/sample1
), the file quant.sf
contains the estimated transcripts abundances, while the equivalence classes (and respective counts) are stored in aux_info/eq_classes.txt
.
Create a variable for the fasta format reference transcriptome (cDNA):
fasta_tr=$base_dir/example_data/reference/Ensembl.GRCh38.93/Homo_sapiens.GRCh38.cdna.all.1.1.10M.fa.gz
Make the directory for the kallisto output and the genome index
# create a directory for kallisto
mkdir $base_dir/kallisto
# create a directory for the genome index
mkdir $base_dir/kallisto/kallisto_index
idx=$base_dir/kallisto/kallisto_index
# create a directory for the output of the alignment
mkdir $base_dir/kallisto/alignment
out_kallisto_alignment=$base_dir/kallisto/alignment
# create a directory for the output of the equivalence classes
mkdir $base_dir/kallisto/pseudo
out_kallisto_pseudo=$base_dir/kallisto/pseudo
Build kallisto index
kallisto index -i $idx/transcripts.idx $fasta_tr
Align reads and quantify transcript abundance with kallisto:
kallisto quant -i $idx/transcripts.idx -o $out_kallisto_alignment/sample1 --bias --threads 4 \
$fastq_files/SRR1039508_R1.fastq.gz $fastq_files/SRR1039508_R2.fastq.gz
In the output folder ($out_kallisto_alignment/sample1
), the file abundance.tsv
contains the estimated transcripts abundances.
Compute the equivalence classes and respective counts with kallisto:
kallisto pseudo -i $idx/transcripts.idx -o $out_kallisto_pseudo/sample1 \
$fastq_files/SRR1039508_R1.fastq.gz $fastq_files/SRR1039508_R2.fastq.gz
In the output folder ($out_kallisto_pseudo/sample1
), the file pseudoalignments.ec
contains the transcripts forming each equivalence class, while pseudoalignments.tsv
contains the equivalence classes counts.
Create a variable for the fasta format reference genome (DNA) and gtf file:
fasta=$base_dir/example_data/reference/Ensembl.GRCh38.93/Homo_sapiens.GRCh38.dna.chromosome.1.1.10M.fa
gtf=$base_dir/example_data/reference/Ensembl.GRCh38.93/Homo_sapiens.GRCh38.93.1.1.10M.gtf
Make the directory for the STAR output and the genome index
# create a directory for STAR
mkdir $base_dir/STAR
# create a directory for the genome index
mkdir $base_dir/STAR/genome_index
GDIR=$base_dir/STAR/genome_index
# create a directory for the output of the alignment
mkdir $base_dir/STAR/alignment
outDir=$base_dir/STAR/alignment
Generate the Genome index:
STAR --runMode genomeGenerate --runThreadN 4 --genomeDir $GDIR \
--genomeFastaFiles $fasta --sjdbGTFfile $gtf --sjdbOverhang 62
Note that sjdbOverhang ideally should be set to the lenght of the reads -1 (our reads are 63 bps).
Align reads with STAR:
cd $outDir
STAR --runMode alignReads --runThreadN 4 --genomeDir $GDIR \
--readFilesIn <(zcat $fastq_files/SRR1039508_R1.fastq.gz) <(zcat $fastq_files/SRR1039508_R2.fastq.gz) \
--outFileNamePrefix sample1 --outSAMtype BAM SortedByCoordinate --quantMode TranscriptomeSAM
When running STAR --quantMode TranscriptomeSAM
is essential to obtain the transcript alignments.
Use gffread to build a reference transcriptome (fasta format) compatible with the DNA fasta and gtf files used for STAR:
gffread -w cDNA.fa -g $fasta $gtf
cdna=$outDir/cDNA.fa
Use salmon on the transcript alignments to compute the equivalence classes:
salmon quant -t $cdna -l A -a sample1Aligned.toTranscriptome.out.bam -o sample1 -p 4 --dumpEq
The option --dumpEq
is essential to obtain the equivalence classes from salmon.
In the output folder ($outDir/sample1
), the file quant.sf
contains the estimated transcripts abundances, while the equivalence classes (and respective counts) are stored in aux_info/eq_classes.txt
.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.