BayesKnockdown: BayesKnockdown: Posterior Probabilities for Edges from Knockdown Data

Share:

A simple, fast Bayesian method for computing posterior probabilities for relationships between a single predictor variable and multiple potential outcome variables, incorporating prior probabilities of relationships. In the context of knockdown experiments, the predictor variable is the knocked-down gene, while the other genes are potential targets. Can also be used for differential expression/2-class data.

Author
William Chad Young
Date of publication
None
Maintainer
William Chad Young <wmchad@uw.edu>
License
GPL-3
Version
1.0.0

View on Bioconductor

Man pages

BayesKnockdown
Posterior Probabilities for Knockdown Data
BayesKnockdown.diffExp
Posterior Probabilities for 2-class Data
BayesKnockdown.es
Posterior Probabilities for ExpressionSet Data
lincs.kd
LINCS L1000 Knockdown Example Dataset

Files in this package

BayesKnockdown/DESCRIPTION
BayesKnockdown/NAMESPACE
BayesKnockdown/NEWS
BayesKnockdown/R
BayesKnockdown/R/BayesKnockdown.r
BayesKnockdown/R/assert.r
BayesKnockdown/build
BayesKnockdown/build/vignette.rds
BayesKnockdown/data
BayesKnockdown/data/lincs.kd.RData
BayesKnockdown/inst
BayesKnockdown/inst/doc
BayesKnockdown/inst/doc/BayesKnockdown.R
BayesKnockdown/inst/doc/BayesKnockdown.pdf
BayesKnockdown/inst/doc/BayesKnockdown.rnw
BayesKnockdown/man
BayesKnockdown/man/BayesKnockdown.Rd
BayesKnockdown/man/BayesKnockdown.diffExp.Rd
BayesKnockdown/man/BayesKnockdown.es.Rd
BayesKnockdown/man/lincs.kd.Rd
BayesKnockdown/vignettes
BayesKnockdown/vignettes/BayesKnockdown.bib
BayesKnockdown/vignettes/BayesKnockdown.rnw
BayesKnockdown/vignettes/auto
BayesKnockdown/vignettes/auto/BayesKnockdown.el