Description Usage Arguments Value Note Examples
obtain an HDF5 dataset reference suitable for handling as numpy matrix
1 | H5matref(filename, dsname = "assay001")
|
filename |
a pathname to an HDF5 file |
dsname |
internal name of HDF5 matrix to use, defaults to 'assay001' |
instance of (S3) "h5py._hl.dataset.Dataset"
This should only be used with persistent environment discipline of basilisk. Additional support is planned in Bioc 3.12.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | ## Not run:
fn = system.file("ban_6_17/assays.h5", package="BiocSklearn")
ban = H5matref(fn)
ban
proc = basilisk::basiliskStart(bsklenv)
basilisk::basiliskRun(proc, function() {
np = import("numpy", convert=FALSE) # ensure
print(ban$shape)
print(np$take(ban, 0:3, 0L))
fullpca = skPCA(ban)
dim(getTransformed(fullpca))
ta = np$take
})
basilisk::basiliskStop(proc)
## End(Not run)
# project samples
## Not run: # on celaya2 this code throws errors, and
# I have seen
# .../lib/python2.7/site-packages/sklearn/decomposition/incremental_pca.py:271: RuntimeWarning: Mean of empty slice.
# explained_variance[self.n_components_:].mean()
# .../lib/python2.7/site-packages/numpy/core/_methods.py:85: RuntimeWarning: invalid value encountered in double_scalars
# ret = ret.dtype.type(ret / rcount)
ta(ban, 0:20, 0L)$shape
st = skPartialPCA_step(ta(ban, 0:20, 0L))
st = skPartialPCA_step(ta(ban, 21:40, 0L), obj=st)
st = skPartialPCA_step(ta(ban, 41:63, 0L), obj=st)
oo = st$transform(ban)
dim(oo)
cor(oo[,1:4], getTransformed(fullpca)[,1:4])
## End(Not run) # so blocking this part of example for now
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.