Description Usage Arguments Value Note Author(s) References See Also Examples
This function is used to obtain the maximization likelihood estimation of normal mixture model by using the EM algorithm (Demster et al., 1977).
1 | emnormalCNV(Object, ...)
|
Object |
An object of class clusteringCNVs. |
... |
Optional arguments |
loglk |
Value of the likelihood function. |
p |
Proportions of groups. |
m |
Means of groups. |
sigma |
Standard deviations of groups. |
count |
A number of iteration to obtain convergence stage. |
bic |
See |
z |
Data frame of proportions of data in mixture components. |
In the package, the distance between two initial means of the two nearest neighbor groups was set groupDistance
= 0.25 as
a default value to obtain initial values (using the kmeans
function in R).
Hoang Tan Nguyen, Tony R Merriman and MA Black. hoangtannguyenvn@gmail.com
Dempster, A. P., Laird, N. M., Rubin, D. B., 1977. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1-38.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | data(fcgr3bMXL)
sS <- resultSegment$segmentationScores
#########Histogram###########################
###View segmentation scores##################
hist(sS[, 1], 100)
############################################
##Number of components#######################
###Make an object of clusteringCNVs class######
objectCluster <- new("clusteringCNVs",
x = sS[, 1], k = 4, EV = TRUE)
set.seed(123)
copynumberGroups <- groupCNVs(Object = objectCluster)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.