Description Usage Arguments Value References Examples
This function modifies the weights and the thresholds of the network to realized the COSNet regularization.
1 | reg_data(W, theta, eta, M, m, pos_num)
|
W |
square symmetric named matrix of the network weights. The components of W are in the [0,1] interval. The i,j-th component is the weight between neuron i and neuron j. The components of the diagonal of W are 0 |
theta |
vector of the neuron activation thresholds |
eta |
real value corresponding to the eta regularization coefficient in the energy function (Frasca et al. 2013). If eta = 0 no regularization is applied. The higher the value of eta, the more the influence of the regularization term |
M |
positive neuron activation value |
m |
negative neuron activation value |
pos_num |
number of expected positive neurons in the equilibrium state of the network |
list of two element:
W |
the regularized connection matrix |
theta |
regularized threshold vector |
Frasca M., Bertoni A., Re M., Valentini G.: A neural network algorithm for semi-supervised node label learning from unbalanced data. Neural Networks, Volume 43, July, 2013 Pages 84-98.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | library(bionetdata);
data(Yeast.STRING.data);
n <- nrow(Yeast.STRING.data);
dim(Yeast.STRING.data);
range(Yeast.STRING.data);
## setting values for parameter alpha, for the rate of positive examples,
## for neuron thresholds and for eta parameter
alpha <- 1;
pos.rate <- 0.01;
thresholds <- runif(n);
range(thresholds);
eta <- 0.001;
a <- reg_data(Yeast.STRING.data, thresholds, eta, sin(alpha),
-cos(alpha), ceiling(pos.rate*n));
## new connection matrix
dim(a$W);
range(a$W);
## new thresholds
range(a$theta);
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.