Description Usage Arguments Value Author(s) References Examples
View source: R/gdcVoomNormalization.R
Normalize raw counts data by TMM implemented in edgeR
and then transform it by voom
in limma
1 | gdcVoomNormalization(counts, filter = TRUE)
|
counts |
raw counts of RNA/miRNA expression data |
filter |
logical, whether to filter out low-expression genes.
If |
A dataframe or numeric matrix of TMM normalized and
voom
transformed expression values on
the log2 scale
Ruidong Li and Han Qu
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package
for differential expression analysis of digital gene expression data.
Bioinformatics. 2010 Jan 1;26(1):139-40.
Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock
linear model analysis tools for RNA-seq read counts. Genome biology.
2014 Feb 3;15(2):R29.
1 2 3 | ####### Normalization #######
rnaMatrix <- matrix(sample(1:100,100), 4, 25)
rnaExpr <- gdcVoomNormalization(counts=rnaMatrix, filter=FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.