Description Details Objects from the Class Slots Methods Author(s) References See Also Examples
This class represents GPA model fit.
When users use fdr
method, users can specify the pattern using 1 and * in pattern
argument,
where 1 and * indicate phenotypes of interest and phenotypes that are not of interest, respectively.
For example, when there are three phenotypes,
pattern="111"
means a SNP associated with all of three phenotypes,
while pattern="11*"
means a SNP associated with the first two phenotypes
(i.e., association with the third phenotype is ignored (averaged out)).
Objects can be created by calls of the form new("GPA", ...)
.
fit
:Object of class "list"
,
representing the fitted GPA model.
setting
:Object of class "list"
,
representing the setting for GPA model fitting.
gwasPval
:Object of class "matrix"
,
representing the p-value matrix from GWAS data.
annMat
:Object of class "matrix"
,
representing the annotation matrix.
signature(object = "GPA")
: provide brief summary of the object.
signature(x = "GPA")
:
provide the matrix of posterior probability that a SNP belongs to each combination of association status.
signature(object = "GPA", pattern=NULL)
: provide local FDR.
By default (i.e., pattern=NULL
),
it returns a matrix of local FDR that a SNP is not associated with each phenotype (i.e., marginal FDR),
where the order of columns is same as that in input GWAS data.
If a pattern is specified, a vector of corresponding local FDR is provided.
See the details about how users can specify the pattern.
signature(object = "GPA", silent=FALSE, vDigitEst=1000, vDigitSE=1000 )
:
provide the covariance matrix for parameter estimates of GPA model.
If silent=TRUE
, it suppresses the summary output.
vDigitEst
and vDigitSE
control number of digits for reporting parameter estimates and standard errors. For example, setting it to 1000 means printing out values up to three digits below zero.
signature(object = "GPA")
:
extract parameter estimates from GPA model fit.
signature(object = "GPA")
:
extract standard errors for parameter estimates from GPA model fit.
Dongjun Chung
Chung D*, Yang C*, Li C, Gelernter J, and Zhao H (2014), "GPA: A statistical approach to prioritizing GWAS results by integrating pleiotropy information and annotation data," PLoS Genetics, 10: e1004787. (* joint first authors)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | showClass("GPA")
# simulator function
simulator <- function( risk.ind, nsnp=20000, alpha=0.6 ) {
m <- length(risk.ind)
p.sig <- rbeta( m, alpha, 1 )
pvec <- runif(nsnp)
pvec[ risk.ind ] <- p.sig
return(pvec)
}
# run simulation
set.seed(12345)
nsnp <- 1000
alpha <- 0.3
pmat <- matrix( NA, nsnp, 5 )
pmat[,1] <- simulator( c(1:200), nsnp=nsnp, alpha=alpha )
pmat[,2] <- simulator( c(51:250), nsnp=nsnp, alpha=alpha )
pmat[,3] <- simulator( c(401:600), nsnp=nsnp, alpha=alpha )
pmat[,4] <- simulator( c(451:750), nsnp=nsnp, alpha=alpha )
pmat[,5] <- simulator( c(801:1000), nsnp=nsnp, alpha=alpha )
ann <- rbinom(n = nrow(pmat), size = 1, prob = 0.15)
ann <- as.matrix(ann,ncol = 1)
fit.GPA.wAnn <- GPA( pmat, ann )
fit.GPA.wAnn
pp.GPA.wAnn <- print( fit.GPA.wAnn )
fdr.GPA.wAnn <- fdr( fit.GPA.wAnn )
fdr11.GPA.wAnn <- fdr( fit.GPA.wAnn, pattern="11" )
fdr1..GPA.wAnn <- fdr( fit.GPA.wAnn, pattern="1*" )
cov.GPA.wAnn <- cov( fit.GPA.wAnn )
est.GPA.wAnn <- estimates( fit.GPA.wAnn )
se.GPA.wAnn <- se( fit.GPA.wAnn )
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.