Description Usage Arguments Details Value Author(s) References See Also Examples
Hypothesis testing for pleiotropy.
| 1 | pTest( fit, fitH0, vDigit=1000 )
 | 
| fit | Fit of the GPA model of interest. | 
| fitH0 | GPA model fit under the null hypothesis of pleiotropy test. | 
| vDigit | Number of digits for reporting parameter estimates and standard errors. For example, setting it to 1000 means printing out values up to three digits below zero. | 
pTest implements the hypothesis testing for pleiotropy.
It requires two GPA model fits, one of interest and one under the null hypothesis
(obtained by setting pleiotropyH0=TRUE when running GPA function),
and evaluates genetical correlation among multiple phenotypes using the likelihood ratio test.
Returns a list with components:
| pi | pi estimates. | 
| piSE | Standard errors for pi estimates. | 
| statistics | Statistics of the pleiotropy test. | 
| pvalue | p-value of the pleiotropy test. | 
Dongjun Chung
Chung D*, Yang C*, Li C, Gelernter J, and Zhao H (2014), "GPA: A statistical approach to prioritizing GWAS results by integrating pleiotropy information and annotation data," PLoS Genetics, 10: e1004787. (* joint first authors)
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | # simulator function
simulator <- function( risk.ind, nsnp=20000, alpha=0.6 ) {
  
  m <- length(risk.ind)
  
  p.sig <- rbeta( m, alpha, 1 )
  pvec <- runif(nsnp)
  pvec[ risk.ind ] <- p.sig
  
  return(pvec)
}
# run simulation
set.seed(12345)
nsnp <- 1000
alpha <- 0.3
pmat <- matrix( NA, nsnp, 5 )
pmat[,1] <- simulator( c(1:200), nsnp=nsnp, alpha=alpha )
pmat[,2] <- simulator( c(51:250), nsnp=nsnp, alpha=alpha )
pmat[,3] <- simulator( c(401:600), nsnp=nsnp, alpha=alpha )
pmat[,4] <- simulator( c(451:750), nsnp=nsnp, alpha=alpha )
pmat[,5] <- simulator( c(801:1000), nsnp=nsnp, alpha=alpha )
# GPA without annotation data
fit.GPA.noAnn <- GPA( pmat, NULL, maxIter = 100 )
# GPA under the null hypothesis of pleiotropy test
fit.GPA.pleiotropy.H0 <- GPA( pmat, NULL, pleiotropyH0=TRUE, maxIter = 100 )
# hypothesis testing for pleiotropy
test.pleiotropy <- pTest( fit.GPA.noAnn, fit.GPA.pleiotropy.H0 )
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.