Description Usage Arguments Details Value Author(s) See Also Examples
This produces residuals of an identical linear model applied to each row of a gene expression matrix (or similar dataset). Computation speed is achieved via straightforward matrix algebra. Most commonly-used residual types are available.
1 | getResidPerGene(lmobj, type = "extStudent")
|
lmobj |
An object produced by function |
type |
A string indicating the type of residual requeseted (defaults to externally-Studentized). |
Types of residuals now available:
Response residuals, observed minus fitted
Response residuals divided by the estimated residual S.E.
Internally Studentized residuals, often referred to as "Standardized"
Externally Studentized residuals, which can be used directly for outlier identification
Returns a instance of ExpressionSet
where the expression matrix
contains the residuals. The phenoData
are inherited from
lmobj$eS
.
Robert Gentleman, Assaf Oron
lmPerGene
, resplot
,dfbetasPerGene
,influence.measures
1 2 3 4 5 6 7 8 | data(sample.ExpressionSet)
lm1 = lmPerGene(sample.ExpressionSet,~sex)
r1 = getResidPerGene(lm1)
### now a boxplot of all residuals by sample
resplot(resmat=exprs(r1),fac=sample.ExpressionSet$sex)
### This plot is not very informative because of some gross outliers;
### try this instead
resplot(resmat=exprs(r1),fac=sample.ExpressionSet$sex,lims=c(-5,5))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.