Description Usage Arguments Value Author(s) References See Also Examples
View source: R/n.genes.adaptive.int.R
Instead of dividing the genes equally in 100 intervals, this function divides them adaptively based on three rules: a) min. number of genes (default =10), b) max. number of genes = total/100; c) based on Median + fraction(SD) from the starting gene of each interval
1 2 | n.genes.adaptive.int(baseOlig.error.step1.res,
min.genes.int=10, div.factor=1)
|
baseOlig.error.step1.res |
It is the result from baseOlig.error.step1 function. |
min.genes.int |
It is the minimum number of genes in the interval, default=10. |
div.factor |
(1/div.factor) is the fraction of Standard Deviation which we wish to include in each interval to calculate number of genes in each interval |
Returns a vector respresenting the number of genes in each interval.
Nitin Jainnitin.jain@pfizer.com
J.K. Lee and M.O.Connell(2003). An S-Plus library for the analysis of differential expression. In The Analysis of Gene Expression Data: Methods and Software. Edited by G. Parmigiani, ES Garrett, RA Irizarry ad SL Zegar. Springer, NewYork.
Jain et. al. (2003) Local pooled error test for identifying differentially expressed genes with a small number of replicated microarrays, Bioinformatics, 1945-1951.
Jain et. al. (2005) Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data, BMC Bioinformatics, Vol 6, 187.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # Loading the library and the data
library(LPE)
data(Ley)
dim(Ley)
# Gives 12488 by 7
Ley[1:3,]
# Returns
# ID c1 c2 c3 t1 t2 t3
# 1 AFFX-MurIL2_at 4.06 3.82 4.28 11.47 11.54 11.34
# 2 AFFX-MurIL10_at 4.56 2.79 4.83 4.25 3.72 2.94
# 3 AFFX-MurIL4_at 5.14 4.10 4.59 4.67 4.71 4.67
Ley[1:1000,2:7] <- preprocess(Ley[1:1000,2:7],data.type="MAS5")
# Finding the baseline distribution of subset of the data
# condition one (3 replicates)
var.1 <- baseOlig.error.step1(Ley[1:1000,2:4], q=0.01)
dim(var.1)
# Returns a matrix of 1000 by 2 (A,M) format
n.genes.subint <- n.genes.adaptive.int(var.1, min.genes.int=10, div.factor=1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.