Nothing
require(MLP)
set.seed(479)
# This is just the expressionset for this experiment.
pathExampleData <- system.file("exampleFiles", "expressionSetGcrma.rda", package = "MLP")
load(pathExampleData)
# Libraries needed
library(limma)
library(org.Mm.eg.db) # for mouse
exprs(expressionSetGcrma)[1:2,]
# 2760 2763 2765 2766 2768 2769 2761 2762 2764 2767
#100009600 2.371111 2.170060 2.233383 2.180717 2.325886 2.239441 2.297301 2.409001 2.49458 2.115814
#100012 2.176163 2.318876 2.419263 2.223307 2.585125 2.346060 2.292061 2.336415 2.47979 2.361981
# 2770 2771
#100009600 2.371262 2.267459
#100012 2.330418 2.520918
pData(expressionSetGcrma)
# sample subGroup sampleColor
#2760 1 1 #FF0000
#2763 4 1 #FF0000
#2765 6 1 #FF0000
#2766 7 1 #FF0000
#2768 9 1 #FF0000
#2769 10 1 #FF0000
#2761 2 2 #0000FF
#2762 3 2 #0000FF
#2764 5 2 #0000FF
#2767 8 2 #0000FF
#2770 11 2 #0000FF
#2771 12 2 #0000FF
pData(expressionSetGcrma)$subGroup1 <- ifelse(pData(expressionSetGcrma)$subGroup==1,"WT","KO")
###==============================================GENERATING LIMMA p-VALUES=================================
# boxplot(data.frame(exprs(expressionSetGcrma))
normDat <- normalizeQuantiles(exprs(expressionSetGcrma), ties=TRUE)
subGroup <- pData(expressionSetGcrma)$subGroup
design <- model.matrix(~ -1 +factor(subGroup ))
colnames(design) <- c("group1", "group2")
contrast.matrix <- makeContrasts(group1-group2, levels=design)
fit <- lmFit(normDat,design)
fit2 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)
normDat.p <- fit2$p.value
normDat.p[1:5]
#[1] 0.4328583 0.7448996 0.6088859 0.1845008 0.2312761
system.time(goGeneSet <- getGeneSets(species = "Mouse", geneSetSource = "GOBP", entrezIdentifiers = featureNames(expressionSetGcrma)))
goGeneSet[1:3]
# output changes with annotation version !
y <- normDat.p[,1]
names(y) <- featureNames(expressionSetGcrma)
y[1:10]
# 100009600 100012 100017 100019 100034251 100036521 100037258 100037278
# 0.4328583 0.7448996 0.6088859 0.1845008 0.2312761 0.7865153 0.7772888 0.1037431
# 100038570 100038635
# 0.1368744 0.3272610
mlpObject <- MLP(geneSet = goGeneSet, geneStatistic = y, minGenes = 5, maxGenes = 100, rowPermutations = TRUE,
nPermutations = 6, smoothPValues = TRUE)
mlpObject[1:10, ]
# output changes with annotation version !
plotGOgraph(object = mlpObject, main = "test of main")
pdf(file = "test10.pdf", width = 10, height = 10)
# x11(width = 10, height = 10)
plot(mlpObject, nRow = 10) # by default: type = "barplot"
dev.off()
unlink("test10.pdf")
if (FALSE){
pdf(file = "test5.pdf", width =10, height = 10)
mlpBarplot(object = mlpObject, geneSetSource = "GOBP", nRow = 10, descriptionLength = 5)
dev.off()
unlink("test5.pdf")
pdf(file = "test100.pdf", width =10, height = 20)
mlpBarplot(object = mlpObject, geneSetSource = "GOBP", nRow = 10, descriptionLength = 100)
dev.off()
unlink("test100.pdf")
}
plot(mlpObject, type = "quantileCurves")
plot(mlpObject, type = "GOgraph")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.