Description Usage Arguments Value Author(s) References Examples
tool.coalesce.merge determines combinable groups and trims clusters 
by removing rarest items.
| 1 | tool.coalesce.merge(data, ncore)
 | 
| data  | data list including following components: CLUSTER: cluster label NODE: item (node) name | 
| ncore | minimum number of items required for trimming | 
| res  | data list including GROUPS, ITEMs, and their hit COUNTs | 
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | ## Generate item and group labels for 100 items:
## Assume that unique gene number (items) is 60:
members <- 1:100 ## will be updated
modules <- 1:100 ## will be updated
set.seed(1)
for (i in 1:10){
## each time pick 10 items (genes) from 60 unique item labels
members[(i*10-9):(i*10)] <- sample(60,10) 
}
## Assume that unique group labels is 30:
for (i in 1:10){
## each time pick 10 items (genes) from 30 unique group labels
modules[(i*10-9):(i*10)] <- sample(30, 10)
}
rcutoff <- 0.33
ncore <- length(members)
## Default output.
res <- data.frame(CLUSTER=modules, GROUPS=modules, ITEM=members,
stringsAsFactors=FALSE)
## Iterative merging and trimming.
res$COUNT <- 0.0
while(TRUE) {
clust <- tool.coalesce.find(res, rcutoff)    
if(is.null(clust)) break
res <- tool.coalesce.merge(clust, ncore)
}
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.