Nothing
#' @title Grouping of numeric values by similarity
#'
#' @description
#'
#' The `group` function groups numeric values by first ordering and then putting
#' all values into the same group if their difference is smaller defined by
#' parameters `tolerance` (a constant value) and `ppm` (a value-specific
#' relative value expressed in parts-per-million).
#'
#' @note
#'
#' Since grouping is performed on pairwise differences between consecutive
#' values (after ordering `x`), the difference between the smallest and largest
#' value in a group can be larger than `tolerance` and `ppm`.
#'
#' @param x increasingly ordered `numeric` with the values to be grouped.
#'
#' @param tolerance `numeric(1)` with the maximal accepted difference between
#' values in `x` to be grouped into the same entity.
#'
#' @param ppm `numeric(1)` defining a value-dependent maximal accepted
#' difference between values in `x` expressed in parts-per-million.
#'
#' @return `integer` of length equal to `x` with the groups.
#'
#' @author Johannes Rainer, Sebastin Gibb
#'
#' @rdname group
#'
#' @export group
#'
#' @examples
#'
#' ## Define a (sorted) numeric vector
#' x <- c(34, 35, 35, 35 + ppm(35, 10), 56, 56.05, 56.1)
#'
#' ## With `ppm = 0` and `tolerance = 0` only identical values are grouped
#' group(x)
#'
#' ## With `tolerance = 0.05`
#' group(x, tolerance = 0.05)
#'
#' ## Also values 56, 56.05 and 56.1 were grouped into a single group,
#' ## although the difference between the smallest 56 and largest value in
#' ## this group (56.1) is 0.1. The (pairwise) difference between the ordered
#' ## values is however 0.05.
#'
#' ## With ppm
#' group(x, ppm = 10)
#'
#' ## Same on an unsorted vector
#' x <- c(65, 34, 65.1, 35, 66, 65.2)
#' group(x, tolerance = 0.1)
#'
#' ## Values 65, 65.1 and 65.2 have been grouped into the same group.
group <- function(x, tolerance = 0, ppm = 0) {
if (is.unsorted(x)) {
idx <- order(x)
x <- x[idx]
} else idx <- integer()
tolerance <- tolerance + sqrt(.Machine$double.eps)
if (ppm > 0)
tolerance <- tolerance + ppm(x[-length(x)], ppm)
res <- cumsum(c(1L, diff(x) >= tolerance))
res[idx] <- res
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.