Description Usage Arguments Details Value Author(s) References See Also Examples
compute shortest paths for all pairs of nodes
1 |
g |
graph object with edge weights given |
Compute shortest paths between every pair of vertices for a dense graph.
It works on both undirected and directed graph.
The result is given as a distance matrix. The matrix is symmetric for an
undirected graph, and asymmetric (very likely) for a directed graph.
For a sparse graph, the johnson.all.pairs.sp
functions
should be used instead.
See documentation on these algorithms in Boost Graph Library for more details.
A matrix of shortest path lengths between all pairs of nodes in the graph.
Li Long <li.long@isb-sib.ch>
Boost Graph Library ( www.boost.org/libs/graph/doc/index.html )
The Boost Graph Library: User Guide and Reference Manual; by Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine; (Addison-Wesley, Pearson Education Inc., 2002), xxiv+321pp. ISBN 0-201-72914-8
1 2 3 4 | con <- file(system.file("XML/conn.gxl", package="RBGL"), open="r")
coex <- fromGXL(con)
close(con)
floyd.warshall.all.pairs.sp(coex)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.