Nothing
## ----bgee1, echo=TRUE, eval=FALSE, warning=FALSE, fig.width = 7, fig.height = 7, fig.align='center'----
# # Load RITAN
# library(RITANdata)
# library(RITAN)
#
# # Install the Bgee package. GO.db is a dependency of a dependency and may need to be installed seperately.
# for (pkg in c('GO.db','BgeeDB','biomaRt')){
# if (! (pkg %in% rownames(installed.packages()) )){
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install(pkg)
# }
# library(pkg, character.only = TRUE)
# }
#
# for (pkg in c('tidyselect','venn','magrittr','ggplot2','igraph')){
# if (! (pkg %in% rownames(installed.packages()) )){
# install.packages(pkg)
# }
# library(pkg, character.only = TRUE)
# }
#
# # Setup Bgee query & get data (this may take some time)
# bgee <- Bgee$new(species = "Homo_sapiens", dataType = "rna_seq", release = "13.2")
# data <- getData(bgee)
# e <- formatData(bgee, data[[1]], callType = "present", stats = "rpkm")
#
# # Explore the dataset with: str(sampleNames(e)), str(featureNames(e)), str(phenoData(e))
# table(phenoData(e)@data$Anatomical.entity.name)
#
# ## -------------------- -
# ## Get expression in two tissues
# tmp <- exprs(e)[ , phenoData(e)@data$Anatomical.entity.name == "heart" ]
# i <- apply( tmp, 1, function(x){ any(is.na(x)) })
# expr_heart <- tmp[ !i, ]
#
# tmp <- exprs(e)[ , phenoData(e)@data$Anatomical.entity.name == "skeletal muscle tissue" ]
# i <- apply( tmp, 1, function(x){ any(is.na(x)) })
# expr_skele <- tmp[ !i, ]
#
# venn::venn( list(Heart = rownames(expr_heart),
# Skeletal = rownames(expr_skele) ),
# cexil= 1, cexsn = 1, zcolor = "style" )
#
# ## -------------------- -
# ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl", "http://Aug2017.archive.ensembl.org" ) # version 90
#
# map_heart <- getBM( attributes = c('ensembl_gene_id','ensembl_transcript_id','hgnc_symbol'),
# filters = 'ensembl_gene_id', values = rownames(expr_heart), mart = ensembl )
#
# map_skele <- getBM( attributes = c('ensembl_gene_id','ensembl_transcript_id','hgnc_symbol'),
# filters = 'ensembl_gene_id', values = rownames(expr_skele), mart = ensembl )
#
# ## -------------------- -
# ## Functions associated with each tissue's top genes
# ## Important: the p-values reported here are observational, not inferential.
#
# mh <- apply( expr_heart, 1, mean )
# top_heart <- map_heart$hgnc_symbol[ map_heart$ensembl_gene_id %in% rownames( expr_heart )[ mh > quantile(mh, .975) ] ] %>% setdiff(.,'')
#
# ms <- apply( expr_skele, 1, mean )
# top_skele <- map_skele$hgnc_symbol[ map_skele$ensembl_gene_id %in% rownames( expr_skele )[ ms > quantile(ms, .975) ] ] %>% setdiff(.,'')
#
# e <- term_enrichment_by_subset( list( Heart = top_heart,
# Skeletal = top_skele ),
# resources = 'GO_slim_PIR', all_symbols = cached_coding_genes )
#
# plot( e[ apply(e[, c(3:4)], 1, max) >= 12, ], cap=40, label_size_y = 8, wrap_y_labels = FALSE )
#
# ## -------------------- -
# ## Network Interactions Within Each Tissue
#
# net_h <- network_overlap( top_heart, resources = c('CCSB','dPPI','HumanNet') )
# net_s <- network_overlap( top_skele, resources = c('CCSB','dPPI','HumanNet') )
#
# net2g <- function(x){
# edges <- as.matrix( x[, c(1,3)] )
# G <- igraph::make_undirected_graph( c(t(edges)) )
# return(G)
# }
#
# g_h <- net2g( net_h )
# g_s <- net2g( net_s )
#
# g_dif <- igraph::difference( g_h, g_s )
# g_int <- igraph::intersection( g_h, g_s )
#
# cat(sprintf('
# Of the top expressed genes, %d are shared and %d differ.
# ', length(V(g_int)), length(V(g_dif)) ))
#
# par(mar=rep(0,4))
# plot(g_dif, vertex.size = 2, vertex.label = NA, vertex.frame.color = 'white', layout = layout_nicely )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.