Nothing
## ---- echo=FALSE, results="hide", message=FALSE-------------------------------
knitr::opts_chunk$set(error=FALSE, message=FALSE, warning=FALSE)
library(BiocStyle)
## -----------------------------------------------------------------------------
library(celldex)
hpca.se <- HumanPrimaryCellAtlasData()
hpca.se
## -----------------------------------------------------------------------------
library(scRNAseq)
hESCs <- LaMannoBrainData('human-es')
hESCs <- hESCs[,1:100]
## -----------------------------------------------------------------------------
library(SingleR)
pred.hesc <- SingleR(test = hESCs, ref = hpca.se, assay.type.test=1,
labels = hpca.se$label.main)
## -----------------------------------------------------------------------------
pred.hesc
# Summarizing the distribution:
table(pred.hesc$labels)
## -----------------------------------------------------------------------------
library(scRNAseq)
sceM <- MuraroPancreasData()
# One should normally do cell-based quality control at this point, but for
# brevity's sake, we will just remove the unlabelled libraries here.
sceM <- sceM[,!is.na(sceM$label)]
# SingleR() expects reference datasets to be normalized and log-transformed.
library(scuttle)
sceM <- logNormCounts(sceM)
## -----------------------------------------------------------------------------
sceG <- GrunPancreasData()
sceG <- sceG[,colSums(counts(sceG)) > 0] # Remove libraries with no counts.
sceG <- logNormCounts(sceG)
sceG <- sceG[,1:100]
## -----------------------------------------------------------------------------
pred.grun <- SingleR(test=sceG, ref=sceM, labels=sceM$label, de.method="wilcox")
table(pred.grun$labels)
## -----------------------------------------------------------------------------
plotScoreHeatmap(pred.grun)
## -----------------------------------------------------------------------------
plotDeltaDistribution(pred.grun, ncol = 3)
## -----------------------------------------------------------------------------
summary(is.na(pred.grun$pruned.labels))
## -----------------------------------------------------------------------------
all.markers <- metadata(pred.grun)$de.genes
sceG$labels <- pred.grun$labels
# Beta cell-related markers
library(scater)
plotHeatmap(sceG, order_columns_by="labels",
features=unique(unlist(all.markers$beta)))
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.