Nothing
## NOTE: not exported or used anywhere
## effective.glength <- function(IR1, IR2, width = 200L)
## {
## ## Motivation: think of IR1 as ranges of singleton islands in a
## ## sample. IR2 represents similar ranges in a different sample.
## ## Assuming random distribution, the chance that IR2[i] intersects
## ## IR1 is, up to the assumption that elements of IR1 are well
## ## separated, is p = sum(width(IR1) + width) / G, where width is
## ## the width of IR2[i]. Since all our widths are the same, a
## ## simple approximation is
## ## p = 2 * width * length(IR1) / G
## ## Then, the number of elements in IR2 that intersects, X ~ Bin(m, p)
## ## where m = length(IR2). This may be used to estimate G.
## if (!is(IR1, "IRanges")) IR1 <- IRanges(start = as.integer(IR1 - width/2L), width = width)
## if (!is(IR2, "IRanges")) IR2 <- IRanges(start = as.integer(IR2 - width/2L), width = width)
## m <- IR2 %in% IR1
## phat <- mean(m)
## Ghat <- 2 * width * length(IR1) / phat
## Ghat
## }
## effective.glength.byChr <-
## function(IRL1, IRL2, chroms = intersect(names(IRL1), names(IRL2)))
## {
## sapply(chroms,
## function(chr) {
## effective.glength(IRL1[[chr]],
## IRL2[[chr]])
## })
## }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.