Nothing
## -----------------------------------------------------------------------------
library(coexnet)
## ---- eval=FALSE--------------------------------------------------------------
#
# # Downloading the microarray raw data from GSE8216 study
# # The accession number of the microarray chip related with this study is GPL2025
#
# getInfo(GSE = "GSE8216", GPL = "GPL2025",directory = ".")
#
# # Shows the actual path file with the folder, its GSE number and the .soft file
#
# dir()
#
## ----eval=FALSE---------------------------------------------------------------
#
# # Reading some GSM samples from GSE4773 study, the folder with the
# # GSM files are called GSE1234.
#
# affy <- getAffy(GSE = "GSE1234",directory = system.file("extdata",package = "coexnet"))
# affy
#
## ----eval=FALSE---------------------------------------------------------------
#
# # The variable affy doesn't have the CDF (Chip Definition File) information.
# # You can include this information modifying the AffyBatch object afterwards.
#
# affy@cdfName <- "HG-U133_Plus_2"
#
## -----------------------------------------------------------------------------
# Create the table with the match between probesets and IDs.
gene_table <- geneSymbol(GPL = "GPL2025",directory = system.file("extdata",package = "coexnet"))
head(gene_table)
## -----------------------------------------------------------------------------
# The created table have NA and empty IDs information.
# We can delete this unuseful information.
# Deletion of IDs with NA information
gene_na <- na.omit(gene_table)
# Deletion of empty IDs
final_table <- gene_na[gene_na$ID != "",]
head(final_table)
## ---- eval=FALSE--------------------------------------------------------------
#
# # Loading gata
#
# if (require(affydata)) {
# data(Dilution)
# }
#
# # Loading table with probeset and gene/ID information
#
# data("info")
#
# # Calculating the expression matrix with rma
#
# rma <- exprMat(affy = Dilution,genes = info,NormalizeMethod = "rma",
# SummaryMethod = "median",BatchCorrect = FALSE)
# head(rma)
## -----------------------------------------------------------------------------
# Simulated expression data
n <- 200
m <- 20
# The vector with treatment samples and control samples
t <- c(rep(0,10),rep(1,10))
# Calculating the expression values normalized
mat <- as.matrix(rexp(n, rate = 1))
norm <- t(apply(mat, 1, function(nm) rnorm(m, mean=nm, sd=1)))
# Calculating the coefficient of variation to case samples
case <- cofVar(expData = norm,complete = FALSE,treatment = t,type = "case")
head(case)
# Creating the boxplot to coefficient of variation results
boxplot(case$cv)
# Extracting the number of atipic data
length(boxplot.stats(case$cv)$out)
## -----------------------------------------------------------------------------
# Calculating the coefficient of variation to whole matrix
complete <- cofVar(norm)
head(complete)
# Creating the boxplot to coefficient of variation results
boxplot(complete$cv)
# Extracting the number of atipic data
length(boxplot.stats(complete$cv)$out)
## ---- eval=FALSE--------------------------------------------------------------
#
# # Creating a matrix with 200 genes and 20 samples
#
# n <- 200
# m <- 20
#
# # The vector with treatment samples and control samples
#
# t <- c(rep(0,10),rep(1,10))
#
# # Calculating the expression values normalized
#
# mat <- as.matrix(rexp(n, rate = 1))
# norm <- t(apply(mat, 1, function(nm) rnorm(m, mean=nm, sd=1)))
#
# # Running the function using the two approaches
#
# sam <- difExprs(expData = norm,treatment = t,fdr = 0.2,DifferentialMethod = "sam")
# head(sam)
## ---- eval=FALSE--------------------------------------------------------------
#
# # Loading data
#
# pathfile <- system.file("extdata","expression_example.txt",package = "coexnet")
# data <- read.table(pathfile,stringsAsFactors = FALSE)
#
# # Finding threshold value
#
# cor_pearson <- findThreshold(expData = data,method = "correlation")
# cor_pearson
#
## -----------------------------------------------------------------------------
# Loading data
pathfile <- system.file("extdata","expression_example.txt",package = "coexnet")
data <- read.table(pathfile,stringsAsFactors = FALSE)
# Building the network
cor_pearson <- createNet(expData = data,threshold = 0.7,method = "correlation")
plot(cor_pearson)
## ---- eval=FALSE--------------------------------------------------------------
#
# # Creating a vector with identifiers
#
# ID <- c("FN1","HAMP","ILK","MIF","NME1","PROCR","RAC1","RBBP7",
# "TMEM176A","TUBG1","UBC","VKORC1")
#
# # Creating the PPI network
#
# ppi <- ppiNet(molecularIDs = ID,evidence = c("neighborhood","coexpression","experiments"))
# plot(ppi)
## -----------------------------------------------------------------------------
# Creating a PPI network from external data
ppi <- ppiNet(file = system.file("extdata","ppi.txt",package = "coexnet"))
plot(ppi)
## -----------------------------------------------------------------------------
# Loading data
data("net1")
data("net2")
# Obtaining Common Connection Patterns
ccp <- CCP(net1,net2)
plot(ccp)
## -----------------------------------------------------------------------------
# Loading data
data("net1")
data("net2")
# Obtain shared components
share <- sharedComponents(net1,net2)
share
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.