R/doc.R

#' Toy graph to play with diffusion
#'
#' Small graph that can easily be plotted and experimented with.
#' It has graphical parameters included, such as the vertex colour
#' and the layout. It also includes an example input. Has graph attributes
#' with example inputs and outputs, see \code{input_*} and \code{output_*}
#' from \code{list.graph.attributes(graph_toy)}
#'
#' @return An \pkg{igraph} object
"graph_toy"

#' diffuStats: an R package to compute and benchmark diffusion scores
#'
#' The \code{diffuStats} package consists of (i) functions to compute 
#' graph kernels, see \code{\link[=kernels]{kernels}}, (ii)
#' the function \code{\link{diffuse}} to compute the 
#' diffusion scores and (iii) the function 
#' \code{\link{perf_eval}} and its wrapper 
#' \code{\link{perf}} to compute performance measures. 
#' The user can find two vignettes in \code{browseVignettes("diffuStats")}: 
#' (1) a quick start with concise examples and (2) 
#' a detailed explanation of the 
#' implemented methods with a practical case study 
#' using a yeast protein dataset.
#'
#' @references 
#' General references:
#' 
#' Most of the graph kernels can be found in:
#' Smola, A. J., & Kondor, R. (2003, August). 
#' Kernels and regularization on graphs. 
#' In COLT (Vol. 2777, pp. 144-158).
#' 
#' The statistical normalisation of the diffusion scores, 
#' which has interest per se, has been introduced in: 
#' Bersanelli, M., Mosca, E., Remondini, D., 
#' Castellani, G., & Milanesi, L. (2016). 
#' Network diffusion-based analysis of high-throughput data 
#' for the detection of differentially enriched modules. 
#' Scientific reports, 6.
#' 
#'
#' @author Sergio Picart-Armada <sergi.picart@upc.edu>, Alexandre Perera-Lluna
#' @docType package
#' @name diffuStats
NULL

Try the diffuStats package in your browser

Any scripts or data that you put into this service are public.

diffuStats documentation built on Feb. 22, 2021, 10 a.m.