dittoPlot: Plots continuous data for cutomizable cells'/samples'...

Description Usage Arguments Details Value Functions Many characteristics of the plot can be adjusted using discrete inputs Author(s) See Also Examples

View source: R/dittoPlot.R

Description

Plots continuous data for cutomizable cells'/samples' groupings on a y-axis

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
dittoPlot(
  object,
  var,
  group.by,
  color.by = group.by,
  shape.by = NULL,
  split.by = NULL,
  extra.vars = NULL,
  cells.use = NULL,
  plots = c("jitter", "vlnplot"),
  assay = .default_assay(object),
  slot = .default_slot(object),
  adjustment = NULL,
  do.hover = FALSE,
  hover.data = var,
  color.panel = dittoColors(),
  colors = seq_along(color.panel),
  shape.panel = c(16, 15, 17, 23, 25, 8),
  theme = theme_classic(),
  main = "make",
  sub = NULL,
  ylab = "make",
  y.breaks = NULL,
  min = NULL,
  max = NULL,
  xlab = group.by,
  x.labels = NULL,
  x.labels.rotate = NA,
  x.reorder = NULL,
  split.nrow = NULL,
  split.ncol = NULL,
  do.raster = FALSE,
  raster.dpi = 300,
  jitter.size = 1,
  jitter.width = 0.2,
  jitter.color = "black",
  jitter.shape.legend.size = NA,
  jitter.shape.legend.show = TRUE,
  boxplot.width = 0.2,
  boxplot.color = "black",
  boxplot.show.outliers = NA,
  boxplot.fill = TRUE,
  boxplot.position.dodge = vlnplot.width,
  vlnplot.lineweight = 1,
  vlnplot.width = 1,
  vlnplot.scaling = "area",
  ridgeplot.lineweight = 1,
  ridgeplot.scale = 1.25,
  ridgeplot.ymax.expansion = NA,
  add.line = NULL,
  line.linetype = "dashed",
  line.color = "black",
  legend.show = TRUE,
  legend.title = "make",
  data.out = FALSE
)

dittoRidgePlot(..., plots = c("ridgeplot"))

dittoRidgeJitter(..., plots = c("ridgeplot", "jitter"))

dittoBoxPlot(..., plots = c("boxplot", "jitter"))

Arguments

object

A Seurat, SingleCellExperiment, or SummarizedExperiment object.

var

Single string representing the name of a metadata or gene, OR a vector with length equal to the total number of cells/samples in the dataset. This is the data that will be displayed.

group.by

String representing the name of a metadata to use for separating the cells/samples into discrete groups.

color.by

String representing the name of a metadata to use for setting fills. Great for highlighting subgroups when wanted, but it defaults to group.by so this input can be skipped otherwise. Affects boxplot, vlnplot, and ridgeplot fills.

shape.by

Single string representing the name of a metadata to use for setting the shapes of the jitter points. When not provided, all cells/samples will be represented with dots.

split.by

1 or 2 strings naming discrete metadata to use for splitting the cells/samples into multiple plots with ggplot faceting.

When 2 metadatas are named, c(row,col), the first is used as rows and the second is used for columns of the resulting grid.

When 1 metadata is named, shape control can be achieved with split.nrow and split.ncol

extra.vars

String vector providing names of any extra metadata to be stashed in the dataframe supplied to ggplot(data).

Useful for making custom spliting/faceting or other additional alterations after dittoSeq plot generation.

cells.use

String vector of cells'/samples' names OR an integer vector specifying the indices of cells/samples which should be included.

Alternatively, a Logical vector, the same length as the number of cells in the object, which sets which cells to include.

plots

String vector which sets the types of plots to include: possibilities = "jitter", "boxplot", "vlnplot", "ridgeplot". Order matters: c("vlnplot", "boxplot", "jitter") will put a violin plot in the back, boxplot in the middle, and then individual dots in the front. See details section for more info.

assay, slot

single strings or integer that set which data to use when plotting gene expression / feature data. See gene for more information.

adjustment

When plotting gene expression / feature counts, should that data be used directly (default) or should it be adjusted to be

  • "z-score": scaled with the scale() function to produce a relative-to-mean z-score representation

  • "relative.to.max": divided by the maximum expression value to give percent of max values between [0,1]

do.hover

Logical. Default = FALSE. If set to TRUE (and if there is a "jitter" in plots): object will be converted to a ggplotly object so that data about individual cells will be displayed when you hover your cursor over the jitter points,

Note: Currently, hovering is incompatible with RidgePlots as plotly does not support the geom_density_ridges2 geom.

hover.data

String vector, a list of variable names, c("meta1","gene1","meta2",...) which determines what data to show upon hover when do.hover is set to TRUE.

color.panel

String vector which sets the colors to draw from for plot fills. Default = dittoColors().

colors

Integer vector, the indexes / order, of colors from color.panel to actually use. (Provides an alternative to directly modifying color.panel.)

shape.panel

Vector of integers corresponding to ggplot shapes which sets what shapes to use. When discrete groupings are supplied by shape.by, this sets the panel of shapes which will be used. When nothing is supplied to shape.by, only the first value is used. Default is a set of 6, c(16,15,17,23,25,8), the first being a simple, solid, circle.

theme

A ggplot theme which will be applied before dittoSeq adjustments. Default = theme_classic(). See https://ggplot2.tidyverse.org/reference/ggtheme.html for other options and ideas.

main

String, sets the plot title. Default = "make" and if left as make, a title will be automatically generated. To remove, set to NULL.

sub

String, sets the plot subtitle

ylab

String, sets the continuous-axis label (=y-axis for box and violin plots, x-axis for ridgeplots). Defaults to "var" or "var expression" if var is a gene.

y.breaks

Numeric vector, a set of breaks that should be used as major gridlines. c(break1,break2,break3,etc.).

min, max

Scalars which control the zoom of the plot. These inputs set the minimum / maximum values of the data to show. Default = set based on the limits of the data in var.

xlab

String which sets the grouping-axis label (=x-axis for box and violin plots, y-axis for ridgeplots). Set to NULL to remove.

x.labels

String vector, c("label1","label2","label3",...) which overrides the names of the samples/groups.

x.labels.rotate

Logical which sets whether the labels should be rotated. Default: TRUE for violin and box plots, but FALSE for ridgeplots.

x.reorder

Integer vector. A sequence of numbers, from 1 to the number of groupings, for rearranging the order of x-axis groupings.

Method: Make a first plot without this input. Then, treating the leftmost grouping as index 1, and the rightmost as index n. Values of x.reorder should be these indices, but in the order that you would like them rearranged to be.

Recommendation for advanced users: If you find yourself coming back to this input too many times, an alternative solution that can be easier long-term is to make the target data into a factor, and to put its levels in the desired order: factor(data, levels = c("level1", "level2", ...)). metaLevels can be used to quickly get the identities that need to be part of this 'levels' input.

split.nrow, split.ncol

Integers which set the dimensions of faceting/splitting when a single metadata is given to split.by.

do.raster

Logical. When set to TRUE, rasterizes the jitter plot layer, changing it from individually encoded points to a flattened set of pixels. This can be useful for editing in external programs (e.g. Illustrator) when there are many thousands of data points.

raster.dpi

Number indicating dots/pixels per inch (dpi) to use for rasterization. Default = 300.

jitter.size

Scalar which sets the size of the jitter shapes.

jitter.width

Scalar that sets the width/spread of the jitter in the x direction. Ignored in ridgeplots.

jitter.color

String which sets the color of the jitter shapes

jitter.shape.legend.size

Scalar which changes the size of the shape key in the legend. If set to NA, jitter.size is used.

jitter.shape.legend.show

Logical which sets whether the shapes legend will be shown when its shape is determined by shape.by.

boxplot.width

Scalar which sets the width/spread of the boxplot in the x direction

boxplot.color

String which sets the color of the lines of the boxplot

boxplot.show.outliers

Logical, whether outliers should by including in the boxplot. Default is FALSE when there is a jitter plotted, TRUE if there is no jitter.

boxplot.fill

Logical, whether the boxplot should be filled in or not. Known bug: when boxplot fill is turned off, outliers do not render.

boxplot.position.dodge

Scalar which adjusts the distance between boxplots when multiple are drawn per grouping (a.k.a. when group.by and color.by are not equal).

vlnplot.lineweight

Scalar which sets the thickness of the line that outlines the violin plots.

vlnplot.width

Scalar which sets the width/spread of the jitter in the x direction

vlnplot.scaling

String which sets how the widths of the of violin plots are set in relation to eachother. Options are "area", "count", and "width". If the deafult is not right for your data, I recommend trying "width". For a detailed explanation of each, see geom_violin.

ridgeplot.lineweight

Scalar which sets the thickness of the ridgeplot outline.

ridgeplot.scale

Scalar which sets the distance/overlap between ridgeplots. A value of 1 means the tallest density curve just touches the baseline of the next higher one. Higher numbers lead to greater overlap. Default = 1.25

ridgeplot.ymax.expansion

Scalar which adjusts the minimal space between the topmost grouping and the top of the plot in order to ensure the curve is not cut off by the plotting grid. The larger the value, the greater the space requested. When left as NA, dittoSeq will attempt to determine an ideal value itself based on the number of groups & linear interpolation between these goal posts: #groups of 3 or fewer: 0.6; #groups=12: 0.1; #groups or 34 or greater: 0.05.

add.line

numeric value(s) where one or multiple line should be added

line.linetype

String which sets the type of line for add.line. Defaults to "dashed", but any ggplot linetype will work.

line.color

String that sets the color(s) of the add.line line(s)

legend.show

Logical. Whether the legend should be displayed. Default = TRUE.

legend.title

String or NULL, sets the title for the main legend which includes colors and data representations. This input is set to NULL by default.

data.out

Logical. When set to TRUE, changes the output, from the plot alone, to a list containing the plot (p) and data (data).

Note: plotly conversion is turned off in the data.out = TRUE setting, but hover.data is still calculated.

...

arguments passed to dittoPlot by dittoRidgePlot, dittoRidgeJitter, and dittoBoxPlot wrappers. Options are all the ones above.

Details

The function creates a dataframe containing the metadata or expression data associated with the given var (or if a vector of data is provided, that data). On the discrete axis, data will be grouped by the metadata given to group.by and colored by the metadata given to color.by. The assay and slot inputs can be used to change what expression data is used when displaying gene expression. If a set of cells to use is indicated with the cells.use input, the data is subset to include only those cells before plotting.

The plots argument determines the types of data representation that will be generated, as well as their order from back to front. Options are "jitter", "boxplot", "vlnplot", and "ridgeplot". Inclusion of "ridgeplot" overrides boxplot and violin plot and changes the plot to be horizontal.

When split.by is provided the name of a metadata containing discrete data, separate plots will be produced representing each of the distinct groupings of the split.by data.

dittoRidgePlot, dittoRidgeJitter, and dittoBoxPlot are included as wrappers of the basic dittoPlot function that simply change the default for the plots input to be "ridgeplot", c("ridgeplot","jitter"), or c("boxplot","jitter"), to make such plots even easier to produce.

Value

a ggplot or plotly where continuous data, grouped by sample, age, cluster, etc., shown on either the y-axis by a violin plot, boxplot, and/or jittered points, or on the x-axis by a ridgeplot with or without jittered points.

Alternatively when data.out=TRUE, a list containing the plot ("p") and the underlying data as a dataframe ("data").

Alternatively when do.hover = TRUE, a plotly converted version of the plot where additional data will be displayed when the cursor is hovered over jitter points.

Functions

Many characteristics of the plot can be adjusted using discrete inputs

Author(s)

Daniel Bunis

See Also

multi_dittoPlot for easy creation of multiple dittoPlots each focusing on a different var.

dittoPlotVarsAcrossGroups to create dittoPlots that show summarized expression (or values for metadata), accross groups, of multiple vars in a single plot.

dittoRidgePlot, dittoRidgeJitter, and dittoBoxPlot for shortcuts to a few 'plots' input shortcuts

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
example(importDittoBulk, echo = FALSE)
myRNA

# Basic dittoplot, with jitter behind a vlnplot (looks better with more cells)
dittoPlot(object = myRNA, var = "gene1", group.by = "timepoint")

# Color distinctly from the grouping variable using 'color.by'
dittoPlot(object = myRNA, var = "gene1", group.by = "timepoint",
    color.by = "conditions")

# Update the 'plots' input to change / reorder the data representations
dittoPlot(myRNA, "gene1", "timepoint",
    plots = c("vlnplot", "boxplot", "jitter"))

# Modify the look with intuitive inputs
dittoPlot(myRNA, "gene1", "timepoint",
    plots = c("vlnplot", "boxplot", "jitter"),
    boxplot.color = "white",
    main = "CD3E",
    legend.show = FALSE)

# Data can also be split in other ways with 'shape.by' or 'split.by'
dittoPlot(object = myRNA, var = "gene1", group.by = "timepoint",
    plots = c("vlnplot", "boxplot", "jitter"),
    shape.by = "clustering",
    split.by = "SNP") # single split.by element
dittoPlot(object = myRNA, var = "gene1", group.by = "timepoint",
    plots = c("vlnplot", "boxplot", "jitter"),
    split.by = c("groups","SNP")) # row and col split.by elements

# For faceting, instead of using 'split.by', the target data can alternatively
# be given to 'extra.var' to have it added in the underlying dataframe, then
# faceting can be added manually for extra flexibility
dittoPlot(myRNA, "gene1", "clustering",
    plots = c("vlnplot", "boxplot", "jitter"),
    extra.var = "SNP") + facet_wrap("SNP", ncol = 1, strip.position = "left")

# Quickly make a Ridgeplot
dittoRidgePlot(myRNA, "gene1", group.by = "timepoint")

# Quickly make a Boxplot
dittoBoxPlot(myRNA, "gene1", group.by = "timepoint")

dittoSeq documentation built on April 17, 2021, 6:01 p.m.