Nothing
exactTestBetaApprox <- function(y1,y2,dispersion=0)
# Test for differences in means between two negative binomial
# or Poisson random variables, or between two groups of variables,
# using a beta distribution approximation.
# Test is naturally conditional on total sum.
# Left and right rejection regions have equal probability.
# Gordon Smyth
# 28 Sep 2019. Last modified 28 Sep 2011.
{
# Convert matrices to vectors
ntags <- NROW(y1)
n1 <- NCOL(y1)
n2 <- NCOL(y2)
if(n1>1) y1 <- rowSums(y1)
if(n2>1) y2 <- rowSums(y2)
if(length(dispersion)==1) dispersion <- rep(dispersion,ntags)
# Null fitted values
y <- y1+y2
mu <- y/(n1+n2)
# Compute p-values
pvals <- rep(1,ntags)
all.zero <- y<=0
alpha1 <- n1*mu/(1+dispersion*mu)
alpha2 <- n2/n1*alpha1
med <- rep(0,ntags)
med[!all.zero] <- qbeta(0.5,alpha1[!all.zero],alpha2[!all.zero])
left <- (y1+0.5)/y<med & !all.zero
if(any(left)) {
pvals[left] <- 2*pbeta((y1[left]+0.5)/y[left],alpha1[left],alpha2[left])
}
right <- (y1-0.5)/y>med & !all.zero
if(any(right)) {
pvals[right] <- 2*pbeta((y1[right]-0.5)/y[right],alpha1[right],alpha2[right],lower.tail=FALSE)
}
names(pvals) <- names(y1)
pvals
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.