R/gemini_inference.R

Defines functions gemini_inference

Documented in gemini_inference

#' gemini_inference
#'
#' @description
#' Estimate the posterior using a variational inference technique. Inference is performed
#' through an iterative process until convergence.
#'
#' @param Model an object of class gemini.model
#' @param mean_x a numeric indicating prior mean of x (default=1).
#' @param sd_x a numeric indicating prior sd of x (default=1).
#' @param mean_xx a numeric indicating prior mean of xx (default=1).
#' @param sd_xx a numeric indicating prior sd of xx (default=1)
#' @param mean_y a numeric indicating prior mean of y (default=0)
#' @param sd_y a numeric indicating prior sd of y (default=10).
#' @param mean_s a numeric indicating prior mean of s(default=0)
#' @param sd_s a numeric indicating prior sd of s (default=10)
#' @param n_iterations a numeric indicating the maximum number of iterations (default=20).
#' @param threshold a numeric indicating the threshold of change in MAE at which to stop the iterative process (default=0.001).
#' @param cores a numeric indicating the number of cores to use.  See details in gemini_parallel. (default=1)
#' @param force_results a logical indicating if the CAVI algorithm should be halted if non-convergence is detected. (default=FALSE)
#' @param verbose default FALSE
#' @param save_iterations for especially large libraries that require long computations,
#' saves the latest iteration of each update.  default FALSE
#'
#' @details
#' GEMINI uses the following parameters, which are described in Zamanighomi et al. and translated here for clarity:
#' \itemize{
#' \item \strong{y:} individual gene effect
#' \item \strong{s:} combination effect
#' \item \strong{x:} screen variation corresponding to individual guides
#' \item \strong{xx:} screen variation corresponding to paired guides
#' }
#'
#' Default parameters may need to be changed if convergence is not achieved. See README for
#' more details.
#'
#' @return a gemini.model object with estimated posteriors
#'
#' @export
#' 
#' @examples 
#' data("Model", package = "gemini")
#' Model %<>% gemini_inference(verbose = FALSE, n_iterations = 1) # iterations set to 1 for testing
#' 
gemini_inference <- function(Model,
                             n_iterations = 20,
                             
                             # update_x_pb params:
                             mean_x = 1,
                             sd_x = 1,
                             mean_xx = 1,
                             sd_xx = 1,
                             
                             # update_y_pb params:
                             mean_y = 0,
                             sd_y = 10,
                             
                             # update_s_pb params:
                             mean_s = 0,
                             sd_s = 10,
                             
                             # Run-time params:
                             threshold = 1e-3,
                             cores = 1,
                             force_results = FALSE,
                             verbose = FALSE,
                             save_iterations = FALSE) {
    # perform n_iterations
    for (i in seq_len(n_iterations)) {
        if (verbose)
            cat(paste("iteration:", i, "\n"))
        Model %<>%
            update_x_pb(
                mean_x = mean_x,
                sd_x = sd_x,
                mean_xx = mean_xx,
                sd_xx = sd_xx,
                cores = cores,
                verbose = verbose
            ) %>%
            update_y_pb(mean_y = mean_y,
                        sd_y = sd_y,
                        verbose = verbose) %>%
            update_s_pb(
                mean_s = mean_s,
                sd_s = sd_s,
                cores = cores,
                verbose = verbose
            ) %>%
            update_tau_pb(cores = cores,
                          verbose = verbose) %>%
            update_mae(verbose = verbose)
        
        # save the Model object after every iteration - useful for large screens with heavy computation
        if (!is.null(save_iterations)) {
            if (is.logical(save_iterations)) {
                save_flag = save_iterations
                save_file = "Model"
            } else if (is.character(save_iterations)) {
                save_flag = TRUE
                save_file = save_iterations
            } else{
                if (verbose)
                    warning("Could not parse save_iterations argument.")
                save_flag = FALSE
            }
            if (isTRUE(save_flag)) {
                if (file.exists(paste0(save_file, "_", i - 1, ".rds"))) {
                    file.remove(paste0(save_file, "_", i - 1, ".rds"))
                }
                saveRDS(Model, file = paste0(save_file, "_", i, ".rds"))
            }
        }
        
        # break loop if mae does not change more than the threshold
        if (verbose) {
            message("MAE: ", Model$mae[i + 1])
        }
        if (abs(Model$mae[i + 1] - Model$mae[i]) < threshold) {
            break
        }
        if (!force_results) {
            if (Model$mae[i + 1] > Model$mae[i]) {
                stop("Model not converging! Please adjust parameters and try again.")
            }
        }
    }
    # output
    return(Model)
}

Try the gemini package in your browser

Any scripts or data that you put into this service are public.

gemini documentation built on Nov. 8, 2020, 8:22 p.m.